Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
J Orthod Sci ; 12: 58, 2023.
Article in English | MEDLINE | ID: mdl-37881667

ABSTRACT

OBJECTIVE: To investigate the impact of platelet-rich plasma (PRP) on canine movement acceleration. METHODS: Randomized clinical trial split-mouth study with a double-blind design and controlled group on 31 orthodontic patients, which had been indicated bilateral maxillary first premolar extraction. Each patient recorded clinical features, analyzed lateral cephalometric film, and evaluated the acceleration on dental models at every specific interval. RESULT: The cumulative distance to the distal canines was larger for the PRP injection group than for the control group at three time points (4 weeks, 8 weeks, and 12 weeks), all of which were statistically significant. The PRP injection group's canine distal width increased from the first 4 weeks (ΔT1) to the highest in the middle 4 weeks (ΔT2 = 1.78 ± 0.11 mm/month), and then it gradually decreased in the last 4 weeks (ΔT3). The speed of the PRP-injected canine was faster than the control group by 1.51 times. CONCLUSION: PRP can accelerate the speed of canine movement in orthodontics and can be applied for severe cases, for example, impacted tooth retraction, molar protraction or retraction, and other cases.

2.
J Med Chem ; 65(4): 3434-3459, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35113556

ABSTRACT

High affinity phenyl-piperidine P2Y14R antagonist 1 (PPTN) was modified with piperidine bridging moieties to probe receptor affinity and hydrophobicity. Various 2-azanorbornane, nortropane, isonortropane, isoquinuclidine, and ring-opened cyclopentylamino derivatives preserved human P2Y14R affinity (fluorescence binding assay), and their pharmacophoric overlay was compared. Enantiomeric 2-azabicyclo[2.2.1]hept-5-en-3-one precursors assured stereochemically unambiguous, diverse products. Pure (S,S,S) 2-azanorbornane enantiomer 15 (MRS4738) displayed higher affinity than 1 (3-fold higher affinity than enantiomer 16) and in vivo antihyperallodynic and antiasthmatic activity. Its double prodrug 143 (MRS4815) dramatically reduced lung inflammation in a mouse asthma model. Related lactams 21-24 and dicarboxylate 42 displayed intermediate affinity and enhanced aqueous solubility. Isoquinuclidine 34 (IC50 15.6 nM) and isonortropanol 30 (IC50 21.3 nM) had lower lipophilicity than 1. In general, rigidified piperidine derivatives did not lower lipophilicity dramatically, except those rings with multiple polar groups. P2Y14R molecular modeling based on a P2Y12R structure showed stable and persistent key interactions for compound 15.


Subject(s)
Piperidines/chemistry , Purinergic P2 Receptor Antagonists/pharmacology , Animals , Mice , Purinergic P2 Receptor Antagonists/chemistry , Structure-Activity Relationship
3.
BME Front ; 2022: 9786242, 2022.
Article in English | MEDLINE | ID: mdl-37850170

ABSTRACT

The immunohistochemical (IHC) staining of the human epidermal growth factor receptor 2 (HER2) biomarker is widely practiced in breast tissue analysis, preclinical studies, and diagnostic decisions, guiding cancer treatment and investigation of pathogenesis. HER2 staining demands laborious tissue treatment and chemical processing performed by a histotechnologist, which typically takes one day to prepare in a laboratory, increasing analysis time and associated costs. Here, we describe a deep learning-based virtual HER2 IHC staining method using a conditional generative adversarial network that is trained to rapidly transform autofluorescence microscopic images of unlabeled/label-free breast tissue sections into bright-field equivalent microscopic images, matching the standard HER2 IHC staining that is chemically performed on the same tissue sections. The efficacy of this virtual HER2 staining framework was demonstrated by quantitative analysis, in which three board-certified breast pathologists blindly graded the HER2 scores of virtually stained and immunohistochemically stained HER2 whole slide images (WSIs) to reveal that the HER2 scores determined by inspecting virtual IHC images are as accurate as their immunohistochemically stained counterparts. A second quantitative blinded study performed by the same diagnosticians further revealed that the virtually stained HER2 images exhibit a comparable staining quality in the level of nuclear detail, membrane clearness, and absence of staining artifacts with respect to their immunohistochemically stained counterparts. This virtual HER2 staining framework bypasses the costly, laborious, and time-consuming IHC staining procedures in laboratory and can be extended to other types of biomarkers to accelerate the IHC tissue staining used in life sciences and biomedical workflow.

4.
Bioorg Med Chem Lett ; 45: 128137, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34048882

ABSTRACT

The Gq-coupled P2Y6 receptor (P2Y6R) is a component of the purinergic signaling system and functions in inflammatory, cardiovascular and metabolic processes. UDP, the native P2Y6R agonist and P2Y14R partial agonist, is subject to hydrolysis by ectonucleotidases. Therefore, we have synthesized UDP/CDP analogues containing a stabilizing α,ß-methylene bridge as P2Y6R agonists and identified compatible affinity-enhancing pyrimidine modifications. A distal binding region on the receptor was explored with 4-benzyloxyimino cytidine 5'-diphosphate analogues and their potency determined in a calcium mobilization assay. A 4-trifluoromethyl-benzyloxyimino substituent in 25 provided the highest human P2Y6R potency (MRS4554, 0.57 µM), and a 5-fluoro substitution of the cytosine ring in 28 similarly enhanced potency, with >175- and 39-fold selectivity over human P2Y14R, respectively. However, 3-alkyl (31-33, 37, 38), ß-d-arabinofuranose (39) and 6-aza (40) substitution prevented P2Y6R activation. Thus, we have identified new α,ß-methylene bridged N4-extended CDP analogues as P2Y6R agonists that are highly selective over the P2Y14R.


Subject(s)
Diphosphonates/pharmacology , Pyrimidine Nucleotides/pharmacology , Receptors, Purinergic P2/metabolism , Diphosphonates/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Pyrimidine Nucleotides/chemical synthesis , Pyrimidine Nucleotides/chemistry , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 41: 128008, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33831560

ABSTRACT

Various 6-alkynyl analogues of a known 3-nitro-2-(trifluoromethyl)-2H-chromene antagonist 3 of the Gq-coupled P2Y6 receptor (P2Y6R) were synthesized using a Sonogashira reaction to replace a 6-iodo group. The analogues were tested in a functional assay consisting of inhibition of calcium mobilization in P2Y6R-expressing astrocytoma cells elicited by native P2Y6R agonist UDP. 6-Ethynyl and 6-cyano groups were installed, and the alkynes were extended through both alkyl and aryl spacers. The most potent antagonists, with IC50 of ~1 µM, were found to be trialkylsilyl-ethynyl 7 and 8 (3-5 fold greater affinity than reference 3), t-butyl prop-2-yn-1-ylcarbamate 14 and p-carboxyphenyl-ethynyl 16 derivatives, and 3 and 8 displayed surmountable antagonism of UDP-induced production of inositol phosphates. Other chain-extended terminal carboxylate derivatives were less potent than the corresponding methyl ester derivatives. Thus, the 6 position in this chromene series is suitable for derivatization with flexibility of substitution, even with sterically extended chains, without losing P2Y6R affinity. However, a 3-carboxylic acid or 3-ester substitution did not serve as a nitro bioisostere, as the affinity was eliminated. These compounds provide additional ligand tools for the underexplored P2Y6R, which is a target for inflammatory, neurodegenerative and metabolic diseases.


Subject(s)
Benzopyrans/pharmacology , Purinergic P2Y Receptor Antagonists/pharmacology , Receptors, Purinergic P2/metabolism , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Purinergic P2Y Receptor Antagonists/chemical synthesis , Purinergic P2Y Receptor Antagonists/chemistry , Structure-Activity Relationship
6.
J Med Chem ; 64(8): 5099-5122, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33787273

ABSTRACT

A known zwitterionic, heterocyclic P2Y14R antagonist 3a was substituted with diverse groups on the central phenyl and terminal piperidine moieties, following a computational selection process. The most potent analogues contained an uncharged piperidine bioisostere, prescreened in silico, while an aza-scan (central phenyl ring) reduced P2Y14R affinity. Piperidine amide 11, 3-aminopropynyl 19, and 5-(hydroxymethyl)isoxazol-3-yl) 29 congeners in the triazole series maintained moderate receptor affinity. Adaption of 5-(hydroxymethyl)isoxazol-3-yl gave the most potent naphthalene-containing (32; MRS4654; IC50, 15 nM) and less active phenylamide-containing (33) scaffolds. Thus, a zwitterion was nonessential for receptor binding, and molecular docking and dynamics probed the hydroxymethylisoxazole interaction with extracellular loops. Also, amidomethyl ester prodrugs were explored to reversibly block the conserved carboxylate group to provide neutral analogues, which were cleavable by liver esterase, and in vivo efficacy demonstrated. We have, in stages, converted zwitterionic antagonists into neutral molecules designed to produce potent P2Y14R antagonists for in vivo application.


Subject(s)
Piperidines/chemistry , Purinergic P2 Receptor Antagonists/chemistry , Receptors, Purinergic P2/metabolism , Animals , Binding Sites , Disease Models, Animal , Drug Design , Humans , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Neuralgia/drug therapy , Piperidines/metabolism , Prodrugs/chemistry , Prodrugs/metabolism , Purinergic P2 Receptor Antagonists/metabolism , Purinergic P2 Receptor Antagonists/therapeutic use , Receptors, Purinergic P2/chemistry , Receptors, Purinergic P2/genetics , Solubility , Structure-Activity Relationship , Triazoles/chemistry
7.
J Med Chem ; 63(17): 9563-9589, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787142

ABSTRACT

Various heteroaryl and bicyclo-aliphatic analogues of zwitterionic biaryl P2Y14 receptor (P2Y14R) antagonists were synthesized, and affinity was measured in P2Y14R-expressing Chinese hamster ovary cells by flow cytometry. Given this series' low water solubility, various polyethylene glycol derivatives of the distally binding piperidin-4-yl moiety of moderate affinity were synthesized. Rotation of previously identified 1,2,3-triazole attached to the central m-benzoic acid core (25) provided moderate affinity but not indole and benzimidazole substitution of the aryl-triazole. The corresponding P2Y14R region is predicted by homology modeling as a deep, sterically limited hydrophobic pocket, with the outward pointing piperidine moiety being the most flexible. Bicyclic-substituted piperidine ring derivatives of naphthalene antagonist 1, e.g., quinuclidine 17 (MRS4608, IC50 ≈ 20 nM at hP2Y14R/mP2Y14R), or of triazole 2, preserved affinity. Potent antagonists 1, 7a, 17, and 23 (10 mg/kg) protected in an ovalbumin/Aspergillus mouse asthma model, and PEG conjugate 12 reduced chronic pain. Thus, we expanded P2Y14R antagonist structure-activity relationship, introducing diverse physical-chemical properties.


Subject(s)
Drug Design , Purinergic P2 Receptor Antagonists/chemistry , Purinergic P2 Receptor Antagonists/pharmacology , Receptors, Purinergic P2/metabolism , Triazoles/chemistry , Triazoles/pharmacology , Animals , HEK293 Cells , Humans , Inhibitory Concentration 50 , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Neuralgia/drug therapy , Protein Conformation , Purinergic P2 Receptor Antagonists/metabolism , Purinergic P2 Receptor Antagonists/therapeutic use , Receptors, Purinergic P2/chemistry , Solubility , Structure-Activity Relationship , Triazoles/metabolism , Triazoles/therapeutic use
8.
ACS Med Chem Lett ; 11(6): 1281-1286, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32551012

ABSTRACT

Eight P2Y14R antagonists, including three newly synthesized analogues, containing a naphthalene or phenyl-triazolyl scaffold were compared in a mouse model of chronic neuropathic pain (sciatic constriction). P2Y14R antagonists rapidly (≤30 min) reversed mechano-allodynia, with maximal effects typically within 1 h after injection. Two analogues (4-[4-(4-piperidinyl)phenyl]-7-[4-(trifluoromethyl)phenyl]-2-naphthalenecarboxylic acid 1 and N-acetyl analogue 4, 10 µmol/kg, i.p.) achieved complete pain reversal (100%) at 1 to 2 h, with relief evident up to 5 h for 4 (41%). A reversed triazole analogue 7 reached 87% maximal protection. Receptor affinity was determined using a fluorescent antagonist binding assay, indicating similar mouse and human P2Y14R affinity. The mP2Y14R affinity was only partially predictive of in vivo efficacy, suggesting the influence of pharmacokinetic factors. Thus P2Y14R is a potential therapeutic target for treating chronic pain.

9.
Cancer Res ; 80(2): 219-233, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31551365

ABSTRACT

ZFP36L1 is a tandem zinc-finger RNA-binding protein that recognizes conserved adenylate-uridylate-rich elements (ARE) located in 3'untranslated regions (UTR) to mediate mRNA decay. We hypothesized that ZFP36L1 is a negative regulator of a posttranscriptional hub involved in mRNA half-life regulation of cancer-related transcripts. Analysis of in silico data revealed that ZFP36L1 was significantly mutated, epigenetically silenced, and downregulated in a variety of cancers. Forced expression of ZFP36L1 in cancer cells markedly reduced cell proliferation in vitro and in vivo, whereas silencing of ZFP36L1 enhanced tumor cell growth. To identify direct downstream targets of ZFP36L1, systematic screening using RNA pull-down of wild-type and mutant ZFP36L1 as well as whole transcriptome sequencing of bladder cancer cells {plus minus} tet-on ZFP36L1 was performed. A network of 1,410 genes was identified as potential direct targets of ZFP36L1. These targets included a number of key oncogenic transcripts such as HIF1A, CCND1, and E2F1. ZFP36L1 specifically bound to the 3'UTRs of these targets for mRNA degradation, thus suppressing their expression. Dual luciferase reporter assays and RNA electrophoretic mobility shift assays showed that wild-type, but not zinc-finger mutant ZFP36L1, bound to HIF1A 3'UTR and mediated HIF1A mRNA degradation, leading to reduced expression of HIF1A and its downstream targets. Collectively, our findings reveal an indispensable role of ZFP36L1 as a posttranscriptional safeguard against aberrant hypoxic signaling and abnormal cell-cycle progression. SIGNIFICANCE: RNA-binding protein ZFP36L1 functions as a tumor suppressor by regulating the mRNA stability of a number of mRNAs involved in hypoxia and cell-cycle signaling.


Subject(s)
Breast Neoplasms/genetics , Butyrate Response Factor 1/metabolism , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Urinary Bladder Neoplasms/genetics , 3' Untranslated Regions/genetics , Animals , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Butyrate Response Factor 1/genetics , Carcinogenesis/genetics , Cell Cycle/genetics , Cell Hypoxia/genetics , Cell Line, Tumor , Cyclin D1/genetics , E2F1 Transcription Factor/genetics , Epigenesis, Genetic , Female , Gene Knockdown Techniques , Humans , Mice , Mutation , RNA Processing, Post-Transcriptional , RNA Stability , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Urinary Bladder Neoplasms/pathology , Xenograft Model Antitumor Assays , Zinc Fingers/genetics
10.
Oncogene ; 38(34): 6196-6210, 2019 08.
Article in English | MEDLINE | ID: mdl-31332289

ABSTRACT

Apoptosis of cancer cells occurs by a complex gene regulatory network. Here we showed that SOX7 was significantly downregulated in different cancer types, especially in lung and breast cancers. Low expression of SOX7 was associated with advantage stage of cancer with shorter overall survival. Cancer cells with loss of SOX7 promoted cell survival and colony formation, suppressed cellular apoptosis and produced a drug resistant phenotype against a variety of chemo/targeting therapeutic agents. Mechanistically, SOX7 induced cellular apoptosis through upregulation of genes associated with both P38 and apoptotic signaling pathway, as well as preventing the proteasome mediated degradation of pro-apoptotic protein BIM. Treatment of either a proteasome inhibitor MG132 or bortezomib, or with a p-ERK/MEK inhibitor U0126 attenuate the SOX7 promoted BIM degradation. We identified Panobinostat, an FDA approved pan-HDAC inhibitor, could elevate and restore SOX7 expression in SOX7 silenced lung cancer cells. Taken together, these data revealed an unappreciated role of SOX7 in regulation of cellular apoptosis through control of MAPK/ERK-BIM signaling.


Subject(s)
Apoptosis/genetics , MAP Kinase Signaling System/physiology , Neoplasms/pathology , SOXF Transcription Factors/physiology , Animals , Bcl-2-Like Protein 11/genetics , Bcl-2-Like Protein 11/metabolism , Cell Survival/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , MAP Kinase Signaling System/genetics , Male , Mice , Mice, SCID , Neoplasms/genetics , Neoplasms/metabolism , SOXF Transcription Factors/genetics , Tumor Cells, Cultured
11.
Cell Rep ; 27(12): 3413-3421.e3, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31216464

ABSTRACT

Hair plays important roles, ranging from the conservation of body heat to the preservation of psychological well-being. Hair loss or alopecia affects millions worldwide, but methods that can be used to regrow hair are lacking. We report that quiescent (telogen) hair follicles can be stimulated to initiate anagen and hair growth by small molecules that activate autophagy, including the metabolites α-ketoglutarate (α-KG) and α-ketobutyrate (α-KB), and the prescription drugs rapamycin and metformin, which impinge on mTOR and AMPK signaling. Stimulation of hair growth by these agents is blocked by specific autophagy inhibitors, suggesting a mechanistic link between autophagy and hair regeneration. Consistently, increased autophagy is detected upon anagen entry during the natural hair follicle cycle, and oral α-KB prevents hair loss in aged mice. Our finding that anagen can be pharmacologically activated in telogen skin when natural anagen-inducing signal(s) are absent has implications for the treatment of hair loss patients.


Subject(s)
Alopecia/drug therapy , Autophagy/drug effects , Hair Follicle/drug effects , Hair/drug effects , TOR Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Aging/drug effects , Aging/metabolism , Aging/physiology , Allyl Compounds/pharmacology , Alopecia/genetics , Alopecia/metabolism , Animals , Autophagy/genetics , Butyrates/pharmacology , Cell Division/drug effects , Cell Division/genetics , Female , Hair/growth & development , Hair Follicle/metabolism , Ketoglutaric Acids/pharmacology , Male , Metformin/pharmacology , Mice , Mice, Inbred C57BL , Oligomycins/pharmacology , Quinazolines/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/genetics
12.
Haematologica ; 103(12): 1980-1990, 2018 12.
Article in English | MEDLINE | ID: mdl-30093396

ABSTRACT

Chromosomal translocation t(8;21)(q22;q22) which leads to the generation of oncogenic RUNX1-RUNX1T1 (AML1-ETO) fusion is observed in approximately 10% of acute myelogenous leukemia (AML). To identify somatic mutations that co-operate with t(8;21)-driven leukemia, we performed whole and targeted exome sequencing of an Asian cohort at diagnosis and relapse. We identified high frequency of truncating alterations in ASXL2 along with recurrent mutations of KIT, TET2, MGA, FLT3, and DHX15 in this subtype of AML. To investigate in depth the role of ASXL2 in normal hematopoiesis, we utilized a mouse model of ASXL2 deficiency. Loss of ASXL2 caused progressive hematopoietic defects characterized by myeloid hyperplasia, splenomegaly, extramedullary hematopoiesis, and poor reconstitution ability in transplantation models. Parallel analyses of young and >1-year old Asxl2-deficient mice revealed age-dependent perturbations affecting, not only myeloid and erythroid differentiation, but also maturation of lymphoid cells. Overall, these findings establish a critical role for ASXL2 in maintaining steady state hematopoiesis, and provide insights into how its loss primes the expansion of myeloid cells.


Subject(s)
Cell Differentiation/genetics , Cell Proliferation/genetics , Hematopoiesis/genetics , Myeloid Cells/metabolism , Repressor Proteins/genetics , Acute Disease , Animals , Gene Expression Profiling/methods , Humans , Leukemia, Myeloid/genetics , Leukemia, Myeloid/pathology , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Myelopoiesis/genetics
13.
J Pathol ; 246(1): 89-102, 2018 09.
Article in English | MEDLINE | ID: mdl-29926931

ABSTRACT

Characterising the activated oncogenic signalling that leads to advanced breast cancer is of clinical importance. Here, we showed that SET domain, bifurcated 1 (SETDB1), a histone H3 lysine 9 methyltransferase, is aberrantly expressed and behaves as an oncogenic driver in breast cancer. SETDB1 enhances c-MYC and cyclin D1 expression by promoting the internal ribosome entry site (IRES)-mediated translation of MYC/CCND1 mRNA, resulting in prominent signalling of c-MYC to promote cell cycle progression, and provides a growth/self-renewal advantage to breast cancer cells. The activated c-MYC-BMI1 axis is essential for SETDB1-mediated breast tumourigenesis, because silencing of either c-MYC or BMI1 profoundly impairs the enhanced growth/colony formation conferred by SETDB1. Furthermore, c-MYC directly binds to the SETDB1 promoter region and enhances its transcription, suggesting a positive regulatory interplay between SETDB1 and c-MYC. In this study, we identified SETDB1 as a prominent oncogene and characterised the underlying mechanism whereby SETDB1 drives breast cancer, providing a therapeutic rationale for targeting SETDB1-BMI1 signalling in breast cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Breast Neoplasms/enzymology , Carcinogenesis/metabolism , Polycomb Repressive Complex 1/metabolism , Protein Methyltransferases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Cycle , Cell Proliferation , Cyclin D1/genetics , Cyclin D1/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Histone-Lysine N-Methyltransferase , Humans , MCF-7 Cells , Mice , Oncogenes , Polycomb Repressive Complex 1/genetics , Protein Methyltransferases/genetics , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction , Transcriptional Activation
14.
J Hematol Oncol ; 10(1): 173, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-29132397

ABSTRACT

BACKGROUND: Liposarcoma, the most common soft tissue tumor, is understudied cancer, and limited progress has been made in the treatment of metastatic disease. The Achilles heel of cancer often is their kinases that are excellent therapeutic targets. However, very limited knowledge exists of therapeutic critical kinase targets in liposarcoma that could be potentially used in disease management. METHODS: Large RNAi and small-molecule tyrosine kinase inhibitor screens were performed against the proliferative capacity of liposarcoma cell lines of different subtypes. Each small molecule inhibitor was either FDA approved or in a clinical trial. RESULTS: Screening assays identified several previously unrecognized targets including PTK2 and KIT in liposarcoma. We also observed that ponatinib, multi-targeted tyrosine kinase inhibitor, was the most effective drug with anti-growth effects against all cell lines. In vitro assays showed that ponatinib inhibited the clonogenic proliferation of liposarcoma, and this anti-growth effect was associated with apoptosis and cell cycle arrest at the G0/G1 phase as well as a decrease in the KIT signaling pathway. In addition, ponatinib inhibited in vivo growth of liposarcoma in a xenograft model. CONCLUSIONS: Two large-scale kinase screenings identified novel liposarcoma targets and a FDA-approved inhibitor, ponatinib with clear anti-liposarcoma activity highlighting its potential therapy for treatment of this deadly tumor.


Subject(s)
Imidazoles/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyridazines/therapeutic use , Animals , Cell Proliferation , Drug Evaluation, Preclinical , Humans , Imidazoles/administration & dosage , Imidazoles/pharmacology , Liposarcoma , Mice , Mice, Inbred NOD , Mice, SCID , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyridazines/administration & dosage , Pyridazines/pharmacology , RNA Interference
15.
Sci Rep ; 7(1): 9749, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852098

ABSTRACT

Anaplastic thyroid carcinoma (ATC) is one of the most lethal malignancies having no effective treatment. Exportin-1 (XPO1) is the key mediator of nuclear export of many tumor suppressor proteins and is overexpressed in human cancers. In this study, we examined the therapeutic potential of selinexor (XPO1 inhibitor) against human ATC cells both in vitro and in vivo. Here, we showed that XPO1 is robustly expressed in primary ATC samples and human ATC cell lines. Silencing of XPO1 by either shRNA or selinexor significantly reduced cellular growth and induced cell cycle arrest, apoptosis of ATC cells by altering the protein expression of cancer-related genes. Moreover, selinexor significantly inhibited tumor growth of ATC xenografts. Microarray analysis showed enrichment of DNA replication, cell cycle, cell cycle checkpoint and TNF pathways in selinexor treated ATC cells. Importantly, selinexor decreased AXL and GAS6 levels in CAL62 and HTH83 cells and suppressed the phosphorylation of downstream targets of AXL signaling such as AKT and P70S6K. Finally, a combination of selinexor with doxorubicin demonstrated a synergistic decrease in the cellular proliferation of several ATC cells. These results provide a rationale for investigating the efficacy of combining selinexor and doxorubicin therapy to improve the outcome of ATC patients.


Subject(s)
Antineoplastic Agents/administration & dosage , Doxorubicin/administration & dosage , Hydrazines/administration & dosage , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Neoplasms/drug therapy , Triazoles/administration & dosage , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Cycle Checkpoints , Disease Models, Animal , Doxorubicin/pharmacology , Heterografts , Humans , Hydrazines/pharmacology , Karyopherins/antagonists & inhibitors , Models, Biological , Neoplasm Transplantation , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Treatment Outcome , Triazoles/pharmacology , Tumor Cells, Cultured , Exportin 1 Protein
16.
Oncotarget ; 8(5): 7521-7532, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-27893412

ABSTRACT

Exportin-1 mediates nuclear export of multiple tumor suppressor and growth regulatory proteins. Aberrant expression of exportin-1 is noted in human malignancies, resulting in cytoplasmic mislocalization of its target proteins. We investigated the efficacy of selinexor against liposarcoma cells both in vitro and in vivo. Exportin-1 was highly expressed in liposarcoma samples and cell lines as determined by immunohistochemistry, western blot, and immunofluorescence assay. Knockdown of endogenous exportin-1 inhibited proliferation of liposarcoma cells. Selinexor also significantly decreased cell proliferation as well as induced cell cycle arrest and apoptosis of liposarcoma cells. The drug also significantly decreased tumor volumes and weights of liposarcoma xenografts. Importantly, selinexor inhibited insulin-like growth factor 1 (IGF1) activation of IGF-1R/AKT pathway through upregulation of insulin-like growth factor binding protein 5 (IGFBP5). Further, overexpression and knockdown experiments showed that IGFBP5 acts as a tumor suppressor and its expression was restored upon selinexor treatment of liposarcoma cells. Selinexor decreased aurora kinase A and B levels in these cells and inhibitors of these kinases suppressed the growth of the liposarcoma cells. Overall, our study showed that selinexor treatment restored tumor suppressive function of IGFBP5 and inhibited aurora kinase A and B in liposarcoma cells supporting the usefulness of selinexor as a potential therapeutic strategy for the treatment of this cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Hydrazines/pharmacology , Karyopherins/antagonists & inhibitors , Liposarcoma/drug therapy , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Triazoles/pharmacology , Animals , Apoptosis/drug effects , Aurora Kinase A/metabolism , Aurora Kinase B/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic , Humans , Insulin-Like Growth Factor Binding Protein 5/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Liposarcoma/genetics , Liposarcoma/metabolism , Liposarcoma/pathology , Male , Mice , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Receptor, IGF Type 1 , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Somatomedin/metabolism , Signal Transduction/drug effects , Time Factors , Transfection , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , Exportin 1 Protein
17.
F1000Res ; 5: 671, 2016.
Article in English | MEDLINE | ID: mdl-27583131

ABSTRACT

Helicobacter pylori is a gastric pathogen that causes several gastroduodenal disorders such as peptic ulcer disease and gastric cancer.  Eradication efforts of H. pylori are often hampered by antimicrobial resistance in many countries, including Vietnam.  Here, the study aimed to investigate the occurrence of antimicrobial resistance among H. pylori clinical isolates across 13 hospitals in Vietnam.  The study further evaluated the clarithromycin resistance patterns of H. pylori strains.  In order to address the study interests, antimicrobial susceptibility testing, epsilometer test and PCR-based sequencing were performed on a total of 193 strains isolated from patients, including 136 children (3-15 years of age) and 57 adults (19-69 years of age).  Antimicrobial susceptibility testing showed that the overall resistance to amoxicillin, clarithromycin, levofloxacin, metronidazole, and tetracycline was 10.4%, 85.5%, 24.4%, 37.8%, and 23.8% respectively.  The distribution of minimum inhibitory concentrations (MICs) of clarithromycin-resistant strains was 85.5% with MIC >0.5 µg/mL.  The majority of the clarithromycin resistant isolates (135 of 165 subjects) have MICs ranging from 2 µg/mL to 16 µg/mL.  Furthermore, sequencing detection of mutations in 23S rRNA gene revealed that strains resistant and susceptible to clarithromycin contained both A2143G and T2182C mutations.  Of all isolates, eight clarithromycin-resistant isolates (MIC >0.5 µg/mL) had no mutations in the 23S rRNA gene.  Collectively, these results demonstrated that a proportion of clarithromycin-resistant H. pylori strains, which are not related to the 23S rRNA gene mutations, could be potentially related to other mechanisms such as the presence of an efflux pump or polymorphisms in the CYP2C19 gene.  Therefore, the present study suggests that providing susceptibility testing prior to treatment or alternative screening strategies for antimicrobial resistance is important for future clinical practice.  Further studies on clinical guidelines and treatment efficacy are pivotal for successful eradication of H. pylori infection.

18.
Oncotarget ; 6(40): 42429-44, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26643872

ABSTRACT

Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach.


Subject(s)
Liposarcoma/genetics , Soft Tissue Neoplasms/genetics , Animals , DNA Mutational Analysis , Flow Cytometry , Gene Knockdown Techniques , Heterografts , High-Throughput Nucleotide Sequencing , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Transcriptome
19.
J Nat Prod ; 78(11): 2726-30, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26516994

ABSTRACT

Two new clerodane diterpenoids (1 and 2) and the known compound caseanigrescen D (3) were isolated from the leaves of Casearia grewiifolia by bioassay-guided fractionation. Their structures were determined by analyses of MS and 2D NMR data. The absolute configurations of 1 and 3 were established by analysis of X-ray diffraction data. Compounds 1-3 were evaluated for their cytotoxicity against four cancer cell lines, KB (mouth epidermal carcinoma cells), HepG-2 (human liver hepatocellular carcinoma cells), LU-1 (human lung adenocarcinoma cells), and MCF-7 (human breast cancer cells). Caseagrewifolin B (2) had inhibitory activity against KB and HepG-2 cell lines with IC50 values of 6.2 to 7.0 µM, respectively. When tested against the normal cells (NIH/3T3), caseagrewifolin B (2) exhibited a significant selective inhibition against cancer cells in comparison with the normal cells. Caseanigrescen D (3) was cytotoxic against four cancer cell lines; however it had no selective inhibition compared with normal cells.


Subject(s)
Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Casearia/chemistry , Diterpenes, Clerodane/isolation & purification , Diterpenes, Clerodane/pharmacology , Plants, Medicinal/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Diterpenes, Clerodane/chemistry , Drug Screening Assays, Antitumor , Female , Hep G2 Cells , Humans , KB Cells , Molecular Structure , Plant Leaves/chemistry , Vietnam
20.
Int J Cancer ; 136(9): 2055-64, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25307878

ABSTRACT

Bromodomain and extra terminal domain (BET) proteins are important epigenetic regulators facilitating the transcription of genes in chromatin areas linked to acetylated histones. JQ1, a BET protein inhibitor, has antiproliferative activity against many cancers, mainly through inhibition of c-MYC and upregulation of p21. In this research, we investigated the use of JQ1 for human osteosarcoma (OS) treatment. JQ1 significantly inhibited the proliferation and survival of OS cells inducing G1 cell cycle arrest, premature senescence, but little effect on apoptosis. Interestingly, c-MYC protein levels in JQ1-treated cells remained unchanged, whereas the upregulation of p21 protein was still observable. Although effective in vitro, JQ1 alone failed to reduce the size of the MNNG/HOS xenografts in immunocompromised mice. To overcome the resistance of OS cells to JQ1 treatment, we combined JQ1 with rapamycin, an mammalian target of rapamycin (mTOR) inhibitor. JQ1 and rapamycin synergistically inhibited the growth and survival of OS cells in vitro and in vivo. We also identified that RUNX2 is a direct target of bromodomain-containing protein 4 (BRD4) inhibition by JQ1 in OS cells. Chromatin immunoprecipitation (ChIP) showed that enrichment of BRD4 protein around RUNX2 transcription start sites diminished with JQ1 treatment in MNNG/HOS cells. Overexpression of RUNX2 protected JQ1-sensitive OS cells from the effect of JQ1, and siRNA-mediated inhibition of RUNX2 sensitized the same cells to JQ1. In conclusion, our findings suggest that JQ1, in combination with rapamycin, is an effective chemotherapeutic option for OS treatment. We also show that inhibition of RUNX2 expression by JQ1 partly explains the antiproliferative activity of JQ1 in OS cells.


Subject(s)
Azepines/pharmacology , Osteosarcoma/drug therapy , Sirolimus/pharmacology , Triazoles/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation/drug effects , Core Binding Factor Alpha 1 Subunit/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Drug Synergism , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Genes, myc/genetics , Humans , Mice , Mice, Nude , Nuclear Proteins/metabolism , Osteosarcoma/metabolism , Transcription Factors/metabolism , Transcription Initiation Site/drug effects , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...