Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Nucleic Acids Res ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979572

ABSTRACT

The hibernation-promoting factor (Hpf) in Staphylococcus aureus binds to 70S ribosomes and induces the formation of the 100S complex (70S dimer), leading to translational avoidance and occlusion of ribosomes from RNase R-mediated degradation. Here, we show that the 3'-5' exoribonuclease YhaM plays a previously unrecognized role in modulating ribosome stability. Unlike RNase R, which directly degrades the 16S rRNA of ribosomes in S. aureus cells lacking Hpf, YhaM destabilizes ribosomes by indirectly degrading the 3'-hpf mRNA that carries an intrinsic terminator. YhaM adopts an active hexameric assembly and robustly cleaves ssRNA in a manganese-dependent manner. In vivo, YhaM appears to be a low-processive enzyme, trimming the hpf mRNA by only 1 nucleotide. Deletion of yhaM delays cell growth. These findings substantiate the physiological significance of this cryptic enzyme and the protective role of Hpf in ribosome integrity, providing a mechanistic understanding of bacterial ribosome turnover.

2.
Article in English | MEDLINE | ID: mdl-38957985

ABSTRACT

Institutional support is crucial for the successful career advancement of all faculty but in particular those who are women. Evolving from the past, in which gender disparities were prevalent in many institutions, recent decades have witnessed significant progress in supporting the career advancement of women faculty in science and academic medicine. However, continued advancement is necessary as previously unrecognized needs and new opportunities for improvement emerge. To identify the needs, opportunities, and potential challenges encountered by women faculty, the Women's Leadership Committee of the Arteriosclerosis, Thrombosis, and Vascular Biology Council developed an initiative termed GROWTH (Generating Resources and Opportunities for Women in Technology and Health). The committee designed a survey questionnaire and interviewed 19 leaders with roles and responsibilities in faculty development from a total of 12 institutions across various regions of the United States. The results were compiled, analyzed, and discussed. Based on our interviews and analyses, we present the current status of these representative institutions in supporting faculty development, highlighting efforts specific to women faculty. Through the experiences, insights, and vision of these leaders, we identified success stories, challenges, and future priorities. Our article provides a primer and a snapshot of institutional efforts to support the advancement of women faculty. Importantly, this article can serve as a reference and resource for academic entities seeking ideas to gauge their commitment level to women faculty and to implement new initiatives. Additionally, this article can provide guidance and strategies for women faculty as they seek support and resources from their current or prospective institutions when pursuing new career opportunities.

3.
Arterioscler Thromb Vasc Biol ; 44(3): e66-e81, 2024 03.
Article in English | MEDLINE | ID: mdl-38174560

ABSTRACT

Peripheral artery disease is an atherosclerotic disease associated with limb ischemia that necessitates limb amputation in severe cases. Cell therapies comprised of adult mononuclear or stromal cells have been clinically tested and show moderate benefits. Bioengineering strategies can be applied to modify cell behavior and function in a controllable fashion. Using mechanically tunable or spatially controllable biomaterials, we highlight examples in which biomaterials can increase the survival and function of the transplanted cells to improve their revascularization efficacy in preclinical models. Biomaterials can be used in conjunction with soluble factors or genetic approaches to further modulate the behavior of transplanted cells and the locally implanted tissue environment in vivo. We critically assess the advances in bioengineering strategies such as 3-dimensional bioprinting and immunomodulatory biomaterials that can be applied to the treatment of peripheral artery disease and then discuss the current challenges and future directions in the implementation of bioengineering strategies.


Subject(s)
Bioengineering , Peripheral Arterial Disease , Adult , Humans , Bioengineering/methods , Peripheral Arterial Disease/therapy , Biocompatible Materials , Cell- and Tissue-Based Therapy , Vascular Surgical Procedures , Treatment Outcome
4.
PLoS Pathog ; 20(1): e1011968, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38252661

ABSTRACT

Macrolides, lincosamides, and streptogramin B (MLS) are structurally distinct molecules that are among the safest antibiotics for prophylactic use and for the treatment of bacterial infections. The family of erythromycin resistance methyltransferases (Erm) invariantly install either one or two methyl groups onto the N6,6-adenosine of 2058 nucleotide (m6A2058) of the bacterial 23S rRNA, leading to bacterial cross-resistance to all MLS antibiotics. Despite extensive structural studies on the mechanism of Erm-mediated MLS resistance, how the m6A epitranscriptomic mark affects ribosome function and bacterial physiology is not well understood. Here, we show that Staphylococcus aureus cells harboring m6A2058 ribosomes are outcompeted by cells carrying unmodified ribosomes during infections and are severely impaired in colonization in the absence of an unmodified counterpart. The competitive advantage of m6A2058 ribosomes is manifested only upon antibiotic challenge. Using ribosome profiling (Ribo-Seq) and a dual-fluorescence reporter to measure ribosome occupancy and translational fidelity, we found that specific genes involved in host interactions, metabolism, and information processing are disproportionally deregulated in mRNA translation. This dysregulation is linked to a substantial reduction in translational capacity and fidelity in m6A2058 ribosomes. These findings point to a general "inefficient translation" mechanism of trade-offs associated with multidrug-resistant ribosomes.


Subject(s)
Adenine/analogs & derivatives , Anti-Bacterial Agents , Staphylococcus aureus , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Lincosamides , Erythromycin/metabolism , Macrolides , Microbial Sensitivity Tests
5.
J Biomed Mater Res A ; 112(4): 512-523, 2024 04.
Article in English | MEDLINE | ID: mdl-37668192

ABSTRACT

Cardiovascular organ-on-a-chip (OoC) devices are composed of engineered or native functional tissues that are cultured under controlled microenvironments inside microchips. These systems employ microfabrication and tissue engineering techniques to recapitulate human physiology. This review focuses on human OoC systems to model cardiovascular diseases, to perform drug screening, and to advance personalized medicine. We also address the challenges in the generation of organ chips that can revolutionize the large-scale application of these systems for drug development and personalized therapy.


Subject(s)
Lab-On-A-Chip Devices , Microphysiological Systems , Humans , Drug Development , Tissue Engineering/methods , Drug Evaluation, Preclinical/methods
8.
Front Cardiovasc Med ; 10: 1214116, 2023.
Article in English | MEDLINE | ID: mdl-37469481

ABSTRACT

Secondary lymphedema is a common condition among cancer survivors, and treatment strategies to prevent or treat lymphedema are in high demand. The development of novel strategies to diagnose or treat lymphedema would benefit from a robust experimental animal model of secondary lymphedema. The purpose of this methods paper is to describe and summarize our experience in developing and characterizing a rat hindlimb model of lymphedema. Here we describe a protocol to induce secondary lymphedema that takes advantage of micro computed tomography imaging for limb volume measurements and visualization of lymph drainage with near infrared imaging. To demonstrate the utility of this preclinical model for studying the therapeutic benefit of novel devices, we apply this animal model to test the efficacy of a biomaterials-based implantable medical device.

9.
JVS Vasc Sci ; 4: 100115, 2023.
Article in English | MEDLINE | ID: mdl-37519333

ABSTRACT

Objective: Lifestyle choices such as tobacco and e-cigarette use are a risk factor for peripheral arterial disease (PAD) and may influence therapeutic outcomes. The effect of chronic nicotine exposure on the angiogenic capacity of human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) was assessed in a murine model of PAD. Methods: Mice were exposed to nicotine or phosphate-buffered saline (PBS) for 28 days, followed by induction of limb ischemia and iPSC-EC transplantation. Cells were injected into the ischemic limb immediately after induction of hindlimb ischemia and again 7 days later. Limb perfusion was assessed by laser Doppler spectroscopy, and transplant cell survival was monitored for 14 days afterward using bioluminescence imaging, followed by histological analysis of angiogenesis. Results: Transplant cell retention progressively decreased over time after implantation based on bioluminescence imaging, and there were no significant differences in cell survival between mice with chronic exposure to nicotine or PBS. However, compared with mice without nicotine exposure, mice with prior nicotine exposure had had an impaired therapeutic response to iPSC-EC therapy based on decreased vascular perfusion recovery. Mice with nicotine exposure, followed by cell transplantation, had significantly lower mean perfusion ratio after 14 days (0.47 ± 0.07) compared with mice undergoing cell transplantation without prior nicotine exposure (0.79 ± 0.11). This finding was further supported by histological analysis of capillary density, in which animals with prior nicotine exposure had a lower capillary density (45.9 ± 4.7 per mm2) compared with mice without nicotine exposure (66.5 ± 8.1 per mm2). Importantly, the ischemic limbs mice exposed to nicotine without cell therapy also showed significant impairment in perfusion recovery after 14 days, compared with mice that received PBS + iPSC-EC treatment. This result suggested that mice without chronic nicotine exposure could respond to iPSC-EC implantation into the ischemic limb by inducing perfusion recovery, whereas mice with chronic nicotine exposure did not respond to iPSC-EC therapy. Conclusions: Together, these findings show that chronic nicotine exposure adversely affects the ability of iPSC-EC therapy to promote vascular perfusion recovery and angiogenesis in a murine PAD model.

10.
Biomater Sci ; 11(17): 5893-5907, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37477446

ABSTRACT

Skeletal muscle regeneration remains a clinical unmet need for volumetric muscle loss and atrophy where muscle function cannot be restored to prior capacity. Current experimental approaches do not account for the complex microenvironmental factors that modulate myogenesis. In this study we developed a biomimetic tissue chip platform to systematically study the combined effects of the extracellular matrix (ECM) microenvironment and mechanical strain on myogenesis of murine myoblasts. Using stretchable tissue chips composed of collagen I (C), fibronectin (F) and laminin (L), as well as their combinations thereof, we tested the addition of mechanical strain regimens on myogenesis at the transcriptomic and translational levels. Our results show that ECMs have a significant effect on myotube formation in C2C12 murine myoblasts. Under static conditions, laminin substrates induced the longest myotubes, whereas fibronectin produced the widest myotubes. Combinatorial ECMs showed non-intuitive effects on myotube formation. Genome-wide analysis revealed the upregulation in actin cytoskeletal related genes that are suggestive of myogenesis. When mechanical strain was introduced to C + F + L combinatorial ECM substrates in the form of constant or intermittent uniaxial strain at low (5%) and high (15%) levels, we observed synergistic enhancements in myotube width, along with transcriptomic upregulation in myosin heavy chain genes. Together, these studies highlight the complex role of microenvironmental factors such as ECM interactions and strain on myotube formation and the underlying signaling pathways.


Subject(s)
Fibronectins , Laminin , Mice , Animals , Fibronectins/metabolism , Cues , Extracellular Matrix , Muscle Development , Muscle, Skeletal , Cell Differentiation
12.
J Biomed Mater Res A ; 111(7): 896-909, 2023 07.
Article in English | MEDLINE | ID: mdl-36861665

ABSTRACT

Mechanical cues from the extracellular matrix (ECM) regulate vascular endothelial cell (EC) morphology and function. Since naturally derived ECMs are viscoelastic, cells respond to viscoelastic matrices that exhibit stress relaxation, in which a cell-applied force results in matrix remodeling. To decouple the effects of stress relaxation rate from substrate stiffness on EC behavior, we engineered elastin-like protein (ELP) hydrogels in which dynamic covalent chemistry (DCC) was used to crosslink hydrazine-modified ELP (ELP-HYD) and aldehyde/benzaldehyde-modified polyethylene glycol (PEG-ALD/PEG-BZA). The reversible DCC crosslinks in ELP-PEG hydrogels create a matrix with independently tunable stiffness and stress relaxation rate. By formulating fast-relaxing or slow-relaxing hydrogels with a range of stiffness (500-3300 Pa), we examined the effect of these mechanical properties on EC spreading, proliferation, vascular sprouting, and vascularization. The results show that both stress relaxation rate and stiffness modulate endothelial spreading on two-dimensional substrates, on which ECs exhibited greater cell spreading on fast-relaxing hydrogels up through 3 days, compared with slow-relaxing hydrogels at the same stiffness. In three-dimensional hydrogels encapsulating ECs and fibroblasts in coculture, the fast-relaxing, low-stiffness hydrogels produced the widest vascular sprouts, a measure of vessel maturity. This finding was validated in a murine subcutaneous implantation model, in which the fast-relaxing, low-stiffness hydrogel produced significantly more vascularization compared with the slow-relaxing, low-stiffness hydrogel. Together, these results suggest that both stress relaxation rate and stiffness modulate endothelial behavior, and that the fast-relaxing, low-stiffness hydrogels supported the highest capillary density in vivo.


Subject(s)
Elastin , Hydrogels , Mice , Animals , Elastin/chemistry , Hydrogels/chemistry , Endothelial Cells , Extracellular Matrix/chemistry , Biocompatible Materials/pharmacology
13.
Bioengineering (Basel) ; 10(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36671662

ABSTRACT

Extracellular matrix proteins (ECMs) provide structural support and dynamic signaling cues that regulate cell behavior and tissue morphogenesis [...].

14.
Biomaterials ; 290: 121818, 2022 11.
Article in English | MEDLINE | ID: mdl-36209578

ABSTRACT

Volumetric muscle loss (VML), characterized by an irreversible loss of skeletal muscle due to trauma or surgery, is accompanied by severe functional impairment and long-term disability. Tissue engineering strategies combining stem cells and biomaterials hold great promise for skeletal muscle regeneration. However, scaffolds, including decellularized extracellular matrix (dECM), hydrogels, and electrospun fibers, used for VML applications generally lack macroporosity. As a result, the scaffolds used typically delay host cell infiltration, transplanted cell proliferation, and new tissue formation. To overcome these limitations, we engineered a macroporous dECM-methacrylate (dECM-MA) hydrogel, which we will refer to as a dECM-MA sponge, and investigated its therapeutic potential in vivo. Our results demonstrate that dECM-MA sponges promoted early cellularization, endothelialization, and establishment of a pro-regenerative immune microenvironment in a mouse VML model. In addition, dECM-MA sponges enhanced the proliferation of transplanted primary muscle stem cells, muscle tissue regeneration, and functional recovery four weeks after implantation. Finally, we investigated the scale-up potential of our scaffolds using a rat VML model and found that dECM-MA sponges significantly improved transplanted cell proliferation and muscle regeneration compared to conventional dECM scaffolds. Together, these results validate macroporous hydrogels as novel scaffolds for VML treatment and skeletal muscle regeneration.


Subject(s)
Hydrogels , Tissue Engineering , Mice , Rats , Animals , Tissue Engineering/methods , Muscle, Skeletal/physiology , Stem Cells , Myoblasts , Tissue Scaffolds , Extracellular Matrix
15.
Bioengineering (Basel) ; 9(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36290523

ABSTRACT

A major challenge in engineering scalable three-dimensional tissues is the generation of a functional and developed microvascular network for adequate perfusion of oxygen and growth factors. Current biological approaches to creating vascularized tissues include the use of vascular cells, soluble factors, and instructive biomaterials. Angiogenesis and the subsequent generation of a functional vascular bed within engineered tissues has gained attention and is actively being studied through combinations of physical and chemical signals, specifically through the presentation of topographical growth factor signals. The spatiotemporal control of angiogenic signals can generate vascular networks in large and dense engineered tissues. This review highlights the developments and studies in the spatiotemporal control of these biological approaches through the coordinated orchestration of angiogenic factors, differentiation of vascular cells, and microfabrication of complex vascular networks. Fabrication strategies to achieve spatiotemporal control of vascularization involves the incorporation or encapsulation of growth factors, topographical engineering approaches, and 3D bioprinting techniques. In this article, we highlight the vascularization of engineered tissues, with a focus on vascularized cardiac patches that are clinically scalable for myocardial repair. Finally, we discuss the present challenges for successful clinical translation of engineered tissues and biomaterials.

16.
J Environ Radioact ; 255: 106968, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36148707

ABSTRACT

In 2015 and 2016, atmospheric transport modeling challenges were conducted in the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification, however, with a more limited scope with respect to emission inventories, simulation period and number of relevant samples (i.e., those above the Minimum Detectable Concentration (MDC)) involved. Therefore, a more comprehensive atmospheric transport modeling challenge was organized in 2019. Stack release data of Xe-133 were provided by the Institut National des Radioéléments/IRE (Belgium) and the Canadian Nuclear Laboratories/CNL (Canada) and accounted for in the simulations over a three (mandatory) or six (optional) months period. Best estimate emissions of additional facilities (radiopharmaceutical production and nuclear research facilities, commercial reactors or relevant research reactors) of the Northern Hemisphere were included as well. Model results were compared with observed atmospheric activity concentrations at four International Monitoring System (IMS) stations located in Europe and North America with overall considerable influence of IRE and/or CNL emissions for evaluation of the participants' runs. Participants were prompted to work with controlled and harmonized model set-ups to make runs more comparable, but also to increase diversity. It was found that using the stack emissions of IRE and CNL with daily resolution does not lead to better results than disaggregating annual emissions of these two facilities taken from the literature if an overall score for all stations covering all valid observed samples is considered. A moderate benefit of roughly 10% is visible in statistical scores for samples influenced by IRE and/or CNL to at least 50% and there can be considerable benefit for individual samples. Effects of transport errors, not properly characterized remaining emitters and long IMS sampling times (12-24 h) undoubtedly are in contrast to and reduce the benefit of high-quality IRE and CNL stack data. Complementary best estimates for remaining emitters push the scores up by 18% compared to just considering IRE and CNL emissions alone. Despite the efforts undertaken the full multi-model ensemble built is highly redundant. An ensemble based on a few arbitrary runs is sufficient to model the Xe-133 background at the stations investigated. The effective ensemble size is below five. An optimized ensemble at each station has on average slightly higher skill compared to the full ensemble. However, the improvement (maximum of 20% and minimum of 3% in RMSE) in skill is likely being too small for being exploited for an independent period.


Subject(s)
Air Pollutants, Radioactive , Radiation Monitoring , Humans , Xenon Radioisotopes/analysis , Air Pollutants, Radioactive/analysis , Radiation Monitoring/methods , Canada , International Cooperation
17.
Proc Natl Acad Sci U S A ; 119(39): e2207257119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122228

ABSTRACT

Bacterial hibernating 100S ribosomes (the 70S dimers) are excluded from translation and are protected from ribonucleolytic degradation, thereby promoting long-term viability and increased regrowth. No extraribosomal target of any hibernation factor has been reported. Here, we discovered a previously unrecognized binding partner (YwlG) of hibernation-promoting factor (HPF) in the human pathogen Staphylococcus aureus. YwlG is an uncharacterized virulence factor in S. aureus. We show that the HPF-YwlG interaction is direct, independent of ribosome binding, and functionally linked to cold adaptation and glucose metabolism. Consistent with the distant resemblance of YwlG to the hexameric structures of nicotinamide adenine dinucleotide (NAD)-specific glutamate dehydrogenases (GDHs), YwlG overexpression can compensate for a loss of cellular GDH activity. The reduced abundance of 100S complexes and the suppression of YwlG-dependent GDH activity provide evidence for a two-way sequestration between YwlG and HPF. These findings reveal an unexpected layer of regulation linking the biogenesis of 100S ribosomes to glutamate metabolism.


Subject(s)
Hibernation , Ribosomal Proteins , Bacteria/metabolism , Glucose/metabolism , Glutamic Acid/metabolism , Humans , NAD/metabolism , Oxidoreductases/metabolism , Ribosomal Proteins/metabolism , Staphylococcus aureus/metabolism , Virulence Factors/metabolism
19.
Mol Cell ; 82(17): 3284-3298.e7, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35772404

ABSTRACT

Bicarbonate (HCO3-) ions maintain pH homeostasis in eukaryotic cells and serve as a carbonyl donor to support cellular metabolism. However, whether the abundance of HCO3- is regulated or harnessed to promote cell growth is unknown. The mechanistic target of rapamycin complex 1 (mTORC1) adjusts cellular metabolism to support biomass production and cell growth. We find that mTORC1 stimulates the intracellular transport of HCO3- to promote nucleotide synthesis through the selective translational regulation of the sodium bicarbonate cotransporter SLC4A7. Downstream of mTORC1, SLC4A7 mRNA translation required the S6K-dependent phosphorylation of the translation factor eIF4B. In mTORC1-driven cells, loss of SLC4A7 resulted in reduced cell and tumor growth and decreased flux through de novo purine and pyrimidine synthesis in human cells and tumors without altering the intracellular pH. Thus, mTORC1 signaling, through the control of SLC4A7 expression, harnesses environmental bicarbonate to promote anabolic metabolism, cell biomass, and growth.


Subject(s)
Bicarbonates , Mechanistic Target of Rapamycin Complex 1 , Nucleotides , Sodium-Bicarbonate Symporters , Bicarbonates/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Nucleotides/biosynthesis , Phosphorylation , Sodium-Bicarbonate Symporters/genetics , Sodium-Bicarbonate Symporters/metabolism
20.
J Mol Cell Cardiol ; 169: 13-27, 2022 08.
Article in English | MEDLINE | ID: mdl-35569213

ABSTRACT

Three-dimensional (3D) bioprinting of cellular or biological components are an emerging field to develop tissue structures that mimic the spatial, mechanochemical and temporal characteristics of cardiovascular tissues. 3D multi-cellular and multi-domain organotypic biological constructs can better recapitulate in vivo physiology and can be utilized in a variety of applications. Such applications include in vitro cellular studies, high-throughput drug screening, disease modeling, biocompatibility analysis, drug testing and regenerative medicine. A major challenge of 3D bioprinting strategies is the inability of matrix molecules to reconstitute the complexity of the extracellular matrix and the intrinsic cellular morphologies and functions. An important factor is the inclusion of a vascular network to facilitate oxygen and nutrient perfusion in scalable and patterned 3D bioprinted tissues to promote cell viability and functionality. In this review, we summarize the new generation of 3D bioprinting techniques, the kinds of bioinks and printing materials employed for 3D bioprinting, along with the current state-of-the-art in engineered cardiovascular tissue models. We also highlight the translational applications of 3D bioprinting in engineering the myocardium cardiac valves, and vascular grafts. Finally, we discuss current challenges and perspectives of designing effective 3D bioprinted constructs with native vasculature, architecture and functionality for clinical translation and cardiovascular regeneration.


Subject(s)
Bioprinting , Tissue Engineering , Bioprinting/methods , Myocardium , Printing, Three-Dimensional , Stem Cells , Tissue Engineering/methods , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...