Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 24(5): 102495, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34113830

ABSTRACT

A primary contributor to urban overheating is the urban heat island (UHI) formed due to increased urbanization. The adverse effects of UHI on building energy use are substantial and well documented. However, such effects are typically demonstrated through numerical simulations which are susceptible to modeling uncertainties and lack of validation resulting in a pressing research gap. Here, for the first time, we conduct a large-scale assessment to demonstrate the devastating impact of UHI on building energy consumption using real building energy use data. We find empirical evidence correlating UHI with building energy use; changes in average UHI intensity of 0.5 K correspond to an increase in monthly cooling energy consumption in a range of 0.17 kWh/m2-1.84 kWh/m2. The study validates theoretical evidence on the impact of UHI on building energy and proposes a highly innovative methodology to assess the impact of overheating on the energy balance of cities.

2.
J Hazard Mater ; 403: 123615, 2021 02 05.
Article in English | MEDLINE | ID: mdl-32771816

ABSTRACT

Urban environments face two challenging problems that are parallel in nature but yet with compelling potential synergistic interactions; urban heat island (UHI) and air pollution. We explore these interactions using in-situ temperature and air pollution data collected from 13 monitoring stations for nine years. Through regression analysis and analysis of variance (ANOVA) tests, we found that carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM) show positive correlations with UHI intensity (UHII). At the same time, Ozone (O3) was negatively correlated with UHII. Moreover, there was a substantial seasonal effect on the strength of the correlations between UHI and air pollution, with some air pollutants showing strong associations with UHI during certain seasons (i.e., winter and autumn). The strongest interactions were observed for NO2 (R² = 0.176) and PM10 (R² = 0.596) during the wintertime and for SO2 (R² = 0.849), CO (R² = 0.346), PM2.5 (R² = 0.695) and O3 (R² = 0.512) during autumn. Understanding such interactions is essential for urban climate studies and our study provides a basis for scientific discussions on integrative mitigation strategies for both UHI and air pollution in Seoul city.

3.
PLoS One ; 15(12): e0243571, 2020.
Article in English | MEDLINE | ID: mdl-33284850

ABSTRACT

The effects of heat waves (HW) are more pronounced in urban areas than in rural areas due to the additive effect of the urban heat island (UHI) phenomenon. However, the synergies between UHI and HW are still an open scientific question and have only been quantified for a few metropolitan cities. In the current study, we explore the synergies between UHI and HW in Seoul city. We consider summertime data from two non-consecutive years (i.e., 2012 and 2016) and ten automatic weather stations. Our results show that UHI is more intense during HW periods than non-heat wave (NHW) periods (i.e., normal summer background conditions), with a maximum UHI difference of 3.30°C and 4.50°C, between HW and NHW periods, in 2012 and 2016 respectively. Our results also show substantial variations in the synergies between UHI and HW due to land use characteristics and synoptic weather conditions; the synergies were relatively more intense in densely built areas and under low wind speed conditions. Our results contribute to our understanding of thermal risks posed by HW in urban areas and, subsequently, the health risks on urban populations. Moreover, they are of significant importance to emergency relief providers as a resource allocation guideline, for instance, regarding which areas and time of the day to prioritize during HW periods in Seoul.


Subject(s)
Hot Temperature/adverse effects , Infrared Rays/adverse effects , Cities , Environmental Monitoring/methods , Seasons , Seoul/epidemiology , Urban Population/trends , Weather , Wind
4.
Sci Rep ; 10(1): 3559, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32103119

ABSTRACT

Urban heat island (UHI), a phenomenon involving increased air temperature of a city compared to the surrounding rural area, results in increased energy use and escalated health problems. To understand the magnitude and characteristics of UHI in Seoul and to accommodate for the high temporal variability and spatial heterogeneity of the UHI which make it inherently challenging to analyze using conventional statistical methods, we developed two deep learning models, a temporal UHI-model and a spatial UHI model, using a feed-forward deep neural network (DNN) architecture. Data related to meteorological elements (e.g. air temperature) and urban texture (e.g. surface albedo) were used to train and test the temporal UHI-model and the Spatial UHI-model respectively. Also, we develop and propose a new metric, UHI-hours, that quantifies the total number of hours that UHI exists in a given area. Our results show that UHI-hours is a better indicator of seasonal UHI than the commonly used index, UHI-intensity. Consequently, UHI-hours is likely to provide a better measure of the cumulative effects of UHI over time than UHI-intensity. UHI-hours will help us to better quantify the effect of UHI on, for example, the overall daily productivity of outdoor workers or heat-related mortality rates.

5.
Sci Total Environ ; 709: 136068, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31869706

ABSTRACT

The urban heat island is a vastly documented climatological phenomenon, but when it comes to coastal cities, close to desert areas, its analysis becomes extremely challenging, given the high temporal variability and spatial heterogeneity. The strong dependency on the synoptic weather conditions, rather than on city-specific, constant features, hinders the identification of recurrent patterns, leading conventional predicting algorithms to fail. In this paper, an advanced artificial intelligence technique based on long short-term memory (LSTM) model is applied to gain insight and predict the highly fluctuating heat island intensity (UHII) in the city of Sydney, Australia, governed by the dualistic system of cool sea breeze from the ocean and hot western winds from the vast desert biome inlands. Hourly measurements of temperature, collected for a period of 18 years (1999-2017) from 8 different sites in a 50 km radius from the coastline, were used to train (80%) and test (20%) the model. Other inputs included date, time, and previously computed UHII, feedbacked to the model with an optimized time step of six hours. A second set of models integrated wind speed at the reference station to account for the sea breeze effect. The R2 ranged between 0.770 and 0.932 for the training dataset and between 0.841 and 0.924 for the testing dataset, with the best performance attained right in correspondence of the city hot spots. Unexpectedly, very little benefit (0.06-0.43%) was achieved by including the sea breeze among the input variables. Overall, this study is insightful of a rather rare climatological case at the watershed between maritime and desertic typicality. We proved that accurate UHII predictions can be achieved by learning from long-term air temperature records, provided that an appropriate predicting architecture is utilized.

SELECTION OF CITATIONS
SEARCH DETAIL
...