Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 360: 142457, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810799

ABSTRACT

In this study, chemically activated fat-free powdered Moringa oleifera seed biomass (MOSB) was synthesized, characterized, and utilized as a cost-effective biosorbent for the abstraction of progesterone (PGT) hormone from synthetic wastewater. Natural PGT is a human steroid hormone from the progestogen family. Synthetic PGT is approved for the regulation of the menstrual cycle, aiding contraception, and is administered as a hormone replacement therapy in menopausal and post-menopausal women. PGT is an endocrine disrupting chemical (EDC) with negative health impacts on biota. The X-ray diffractogram (XRD), Scanning electron microscopy-Energy-dispersive X-ray spectroscopy (SEM-EDS), and Brunauer-Emmet-Teller (BET) analyses displayed a porous, amorphous biosorbent with an elemental composition of 72.5% carbon and 22.5% oxygen and a specific surface area of 210.0 m2 g-1. The process variables including temperature (298-338 K), pH (2-10), contact time (10-180 min), adsorbate concentration (20-500 µg L-1), and adsorbent dosage (0.1-2.0 g) were optimized using response surface methodology (RSM) to obtain the greatest efficacy of MOSB during biosorption of PGT. The optimum parameters for PGT biosorption onto MOSB were: 86.8 min, 500 µg L-1 adsorbate concentration, 298 K, and 0.1 g adsorbent dosage. PGT removal from aqueous solutions was pH-independent. The Langmuir isotherm best fitted the equilibrium data with maximal monolayer biosorption capacity of 135.8 µg g-1. The biosorption rate followed the pseudo-first-order (PFO) kinetic law. The thermodynamic functions (ΔG < 0, ΔH = -9.258 kJ mol-1 and ΔS = +44.16 J mol-1) confirmed that the biosorption of PGT onto MOSB is a spontaneous and exothermic process with increased randomness at the adsorbent surface. The biosorption mechanism was physisorption and was devoid of electrostatic interactions. The findings from this study indicate that MOSB is an inexpensive, low-carbon, and environmentally friendly biosorbent that can effectively scavenge PGT from aqueous solutions.


Subject(s)
Biomass , Moringa oleifera , Progesterone , Seeds , Water Pollutants, Chemical , Moringa oleifera/chemistry , Adsorption , Progesterone/metabolism , Progesterone/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Seeds/chemistry , Wastewater/chemistry , Kinetics , Hydrogen-Ion Concentration , Endocrine Disruptors/metabolism , Endocrine Disruptors/chemistry
2.
Environ Res ; 237(Pt 2): 117076, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37683795

ABSTRACT

This study investigated the levels, mass loadings, removal efficiency, and associated ecotoxicological risks of selected endocrine disrupting chemicals (EDCs), namely, dibutylphthalate (DBP), diethylhexylphthalate (DEHP), dimethylphthalate (DMP), linuron (LNR) and progesterone (PGT) in wastewater, sludge, and untreated dry biosolid (UDBS) samples from twelve wastewater treatment plants (WWTPs) in nine major towns in Kenya. Analysis was done using high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS). All the wastewater influents had quantifiable levels of EDCs with DBP being the most abundant (37.49%) with a range of 4.33 ± 0.63 to 19.68 ± 1.24 µg L-1. DEHP was the most abundant in sludge and accounted for 48.2% ranging between 278.67 and 9243.49 ng g-1 dry weight (dw). In the UDBS samples, DEHP was also the most abundant (40%) of the total EDCs detected with levels ranging from 78.77 to 3938.54 ng g-1 dw. The average removal efficiency per pollutant was as follows: DMP (98.7%) > DEHP (91.7%) > PGT (83.4%) > DBP (77.9%) > LNR (72.2%) which can be attributed to sorption onto the biosolid, biological degradation, photolysis, and phytoremediation. The pH was negatively correlated to the EDC concentrations while total dissolved solids (TDS), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and electrical conductivity (EC) were positively correlated. The mass loadings were as high as 373.33 g day-1 of DBP in the treatment plants located in densely populated cities. DEHP and PGT had their Risk Quotients (RQs) > 1, posing a high risk to biota. DMP, DBP, and LNR posed medium risks as their RQ values were between 0.1 and 1. EDCs are therefore loaded to environmental compartments through either the effluent that loads these pollutants into the receiving aquatic ecosystem or through the UDBS, which are used as fertilizers in agricultural farmlands causing potential toxicological risks to aquatic and terrestrial life.

3.
Environ Pollut ; 278: 116855, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33706244

ABSTRACT

The impact of oil exploration and production activities on the environment of sub-saharan African countries is not well studied. This study aimed at determining concentrations, sources, and bioaccumulation of 13 polycyclic aromatic hydrocarbons (PAHs) in sediments and fish from the White Nile near Melut oil fields, South Sudan. The study also assessed the ecological and human health risk associated with PAHs in this aquatic system. Total (∑13) PAH concentrations ranged from 566 to 674 ng g-1dry weight (dw) in sediments, while those in fish were 191-1143 ng g-1 wet weight (ww). ∑13PAH concentrations were significantly higher in C. gariepinus than in other fish species. Low molecular weight PAHs (LPAHs) dominated the profile of PAHs in sediments (constituted 95% of ∑13PAHs) and fish (97% of ∑13PAHs). Compared to Sediment Quality Guidelines of the United States Oceanic and Atmospheric Administration, the levels of LPAHs in this study were all above the threshold effect limits, but below the probable effect level, while those of high molecular weight PAHs (HPAHs) were all below the lowest effect levels. The carcinogenic potency equivalent concentrations of PAHs in L. niloticus and C. gariepinus were above the US EPA screening level; suggesting consumption of these species could adversely affect human health. Biota-sediment accumulation factor values (range: 0.006-3.816 g OC g-1 lipid) for PAHs showed high bioaccumulation of LPAHs in fish muscle, and that bioaccumulation decreased with increase in hydrophobicity of the compounds. This is possibly because LPAHs have higher aqueous solubilities which increases their bioavailability through water-gill transfers compared to HPAHs. Profiles of PAHs in the White Nile environment indicate predominant contribution from petrogenic sources, which could be attributed to presence of crude oil reservoirs and oil production operations. More research into the levels of other environmental pollutants in the oil-rich area is recommended.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Africa, Eastern , Animals , Bioaccumulation , Environmental Monitoring , Geologic Sediments , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
4.
Ecotoxicol Environ Saf ; 214: 112094, 2021 May.
Article in English | MEDLINE | ID: mdl-33677382

ABSTRACT

Honey has multifaceted nutritional and medicinal values; however, its quality is hinged on the floral origin of the nectar. Taking advantage of the large areas that they cover; honeybees are often used as bioindicators of environmental contamination. The focus of the present paper was to examine the quality of honey from within the vicinity of an abandoned pesticide store in Masindi District in western Uganda. Surficial soils (<20 cm depths) and honey samples were collected from within the vicinity of the abandoned pesticide store and analysed for organochlorine pesticide (OCP) residues using gas chromatograph coupled to an electron capture detector (GC-ECD). The mean level of ∑DDTs in all the soil samples was 503.6 µg/kg dry weight (d.w). ∑DDTs contributed 92.2% to the ∑OCPs contamination loads in the soil samples, and others (lindane, aldrin, dieldrin, and endosulfans) contributed only 7.8%. Ratio (p, p'-DDE+p, p'-DDD)/p, p'-DDT of 1.54 suggested historical DDT input in the area. In all the honey samples, the mean level of ∑DDTs was 20.9 µg/kg. ∑DDTs contributed 43.3% to ∑OCPs contamination loads in the honey samples, followed by lindane (29.8%), endosulfans (23.6%) and dieldrin (3.2%), with corresponding mean levels of 14.4, 11.4 and 1.55 µg/kg, respectively. Reproductive risk assessment was done based on the hazard quotient (HQ) and hazard index (HI) procedure. In our study, the calculated HIs for adults (102.38), and children (90.33) suggested high potential health risks to the honey consumers. Lindane, endosulfan and p, p'-DDD detected in the honey samples at levels exceeding the acute reference dose (ARfD) are known risk factors for spontaneous abortion, reduced implantation, menstrual cycle shortening, impaired semen quality, and prostate cancer in exposed individuals and experimental animal models.


Subject(s)
Dietary Exposure/statistics & numerical data , Honey/analysis , Hydrocarbons, Chlorinated/analysis , Pesticide Residues/analysis , Adult , Aldrin/analysis , Animals , Child , DDT/analysis , Dichlorodiphenyl Dichloroethylene/analysis , Dieldrin/analysis , Endosulfan/analysis , Environmental Biomarkers , Environmental Monitoring/methods , Female , Hexachlorocyclohexane/analysis , Humans , Male , Pesticides/analysis , Reproductive Health , Semen Analysis , Soil , Uganda
5.
Sci Total Environ ; 739: 139913, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32540660

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are known organic pollutants with adverse health effects on humans and the ecosystem. This paper synthesises literature about the status of the pollutants and their precursors, identifies knowledge gaps and discusses future perspectives on the study of PFASs in Africa. Limited data on PFASs prevalence in Africa is available because there is limited capacity to monitor PFASs in African laboratories. The levels of PFASs in Africa are higher in samples from urban and industrialized areas compared to rural areas. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are the dominant PFASs in human samples from Africa. Levels of PFOS and PFOA in these samples are lower than or comparable to those from industrialized countries. PFOA and PFOS levels in drinking water in Africa are, in some cases, higher than the EPA drinking water guidelines suggesting potential risk to humans. The levels of PFASs in birds' eggs from South Africa are higher, while those in other environmental media from Africa are lower or comparable to those from industrialized countries. Diet influences the pollutant levels in fish, while size and sex affect their accumulation in crocodiles. No bioaccumulation of PFASs in aquatic systems in Africa could be confirmed due to small sample sizes. Reported sources of PFASs in Africa include municipal landfills, inefficient wastewater treatment plants, consumer products containing PFASs, industrial wastewater and urban runoff. Relevant stakeholders need to take serious action to identify and deal with the salient sources of PFASs on the African continent.


Subject(s)
Alkanesulfonic Acids/analysis , Environmental Pollutants , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Animals , Body Burden , Caprylates , Ecosystem , Environmental Monitoring , Humans , South Africa , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...