Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801640

ABSTRACT

OBJECTIVE: Pediocin PA-1, an antimicrobial peptide derived from Pediococcus acidilactici PAC1.0, has a potential application as a food preservative thanks to its strong inhibitory activity against the foodborne pathogen L. monocytogenes. This study aimed to produce Pediocin PA-1 from the yeast P. pastoris and evaluate its characteristics. METHODS: Gene encoding Pediocin PA-1 was integrated into P. pastoris X33 genome to establish the strain X33::ped, which could produce and secrete this peptide into culture medium. The antimicrobial activity of Pediocin PA-1 was examined using agar diffusion assay. The stability of pediocin PA-1 was determined based on its remaining antibacterial activity after exposure to proteases and extreme pH and temperatures. The potential use of this bacteriocin in food preservation was demonstrated using the L. monocytogenes infected pork bologna. The anticancer activity of Pediocin PA-1 was also investigated on some cancer cells using MTT assay. RESULTS: We established the yeast P. pastoris X33::ped capable of producing pediocin PA-1 with antimicrobial activity against L. monocytogenes and some other harmful bacteria. Pediocin PA-1 was stable at 100˚C and resistant against pH 1-12 for 1 h, but susceptible to trypsin, α-chymotrypsin, and proteinase K. This peptide could reduce the number of L. monocytogenes in pork bologna by 3.59 log CFU/g after 7 days of storage at 4˚C. Finally, Pediocin PA-1 (25 µg/ml) inhibited the proliferation of A549 and Hela cancer cells. CONCLUSION: We succeeded in producing active Pediocin PA-1 from P. pastoris and demonstrated its potential use in food preservation and pharmaceutical industry.

2.
Appl Microbiol Biotechnol ; 105(16-17): 6345-6354, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34410438

ABSTRACT

VP28 is an envelope protein of White Spot Syndrome Virus (WSSV), which has been shown in previous studies to induce a high immune response in shrimp. VP28 has been produced in some host systems such as Escherichia coli, Bacillus subtilis, and Pichia pastoris as free protein. Here we showed a new strategy of anchoring VP28 on the Saccharomyces cerevisiae yeast surface and using the yeast cell extract combined with probiotic as an oral vaccine for shrimp farming. We have successfully constructed a recombinant yeast cell capable of expressing VP28 on the cell surface. The feeding diet combined with VP28 anchored yeast cell extract provided significant assurance to Litopenaeus vannamei, challenged by WSSV, resulting in a relative percent survival (RPS) of 87.10 ± 2.15%. Interestingly, the utilization of VP28 anchored yeast cell extract could enhance the efficiency of probiotic strains like Lactobacillus and Bacillus on shrimp farming. The results in both laboratory scales and field trials using extract of VP28 displaying Saccharomyces showed a growth-promoting effect in shrimp, assessed through average shrimp weight. Taken together, our results in this study demonstrated a new successful strategy of using yeast cell surface as a tool to produce VP28-based oral vaccine for shrimp aquaculture. KEY POINTS: • A new strategy of using VP28 antigen as anchored protein on S. cerevisiae yeast cell surface (S. cerevisiae::VP28) • The utilization of VP28 antigen and yeast as S. cerevisiae::VP28 extract enhanced potential protection of Litopenaeus vannamei against White Spot Syndrome Virus (RPS 87.10%) • The use of S. cerevisiae::VP28 extract increased efficiency of probiotic on shrimp growth-promoting effect either lab-scale or field trial.


Subject(s)
Penaeidae , Saccharomyces cerevisiae , Agriculture , Animals , Antigens, Surface , Saccharomyces cerevisiae/genetics , Saccharomycetales , Viral Envelope Proteins
3.
J Biosci Bioeng ; 132(1): 56-63, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33896701

ABSTRACT

Dissolved oxygen (DO)-stat fed-batch culture, which allows a high cell density culture of microorganisms under constant DO conditions, was applied to anti-CRP single-chain variable fragment (scFv) production using recombinant Escherichia coli. The DO-stat fed-batch culture was successfully performed under various DO conditions for more than 50 h, resulting in increased scFv production from 0.5 to 0.8 g/L by flask and batch cultures to 2.8-3.0 g/L by the fed-batch culture under the conditions of 5-40% of DO saturation. The formation of inclusion bodies was effectively depressed during DO-stat fed-batch operation; consequently, the solubility of anti-CRP scFv was significantly improved from 36-43% by the flask and batch cultures to 96-98% by the DO-stat fed-batch culture under a wide range of DO conditions. From the kinetic analysis of fed-batch experiments, it was also found that the successful folding of anti-CRP scFv in the cytoplasm occurred when metabolic rates, such as the specific growth rate and specific glucose consumption rate, were relatively low. These results show that the fed-batch culture operated by the DO-stat feeding strategy was effective for the enhanced production of anti-CRP scFv with high solubility.


Subject(s)
Batch Cell Culture Techniques , DNA, Recombinant/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Single-Chain Antibodies/biosynthesis , Cytoplasm/metabolism , Escherichia coli/cytology , Escherichia coli/genetics , Fermentation , Inclusion Bodies/metabolism , Kinetics , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...