Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 343: 123138, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38097160

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) associated with indoor PM pose a high risk to human health because of their toxicity. A total of 160 daily samples of indoor PM2.5 and PM0.1 were collected in Hanoi and analysed for 15 PAHs. In general, the concentrations of carcinogenic PAHs (car-PAHs) accounted for 21% ± 2%, 19.1% ± 2%, and 26% ± 3% of the concentrations of 15 PAHs in PM2.5, PM0.1-2.5, and PM0.1, respectively. Higher percentages of car-PAHs were found in smaller fractions (PM0.1), which can be easily deposited deep in the pulmonary regions of the human respiratory tract. The concentrations of 15 PAHs were higher in winter than in summer. The most abundant PAH species were naphthalene and phenanthrene, accounting for 11%-21% and 19%-23%, respectively. The PAH content in PM0.1 was almost twice as high as those in PM2.5 and PM0.1-2.5. Principal component analysis found that vehicle emissions and the combustion of biomass and coal were the main outdoor sources of PAHs, whereas indoor sources included cooking activities, the combustion of incense, scented candles, and domestic uses in houses. According to the results, 60%-90% of the PM0.1-bound BaP(eq) was deposited in the alveoli region, whereas 63%-75% of the PM2.5-bound BaP(eq) was deposited in head airways (HA), implying that most of the particles deposited in the HA region were PM0.1-2.5. The contributions of dibenz[a,h]anthracene and benzo[a]pyrene were dominant and contributed from 36% to 51% and 31%-50%, respectively, to the carcinogenic potential, whereas benzo[a]pyrene contributed from 30% to 49% to the mutagenic potential for both size fractions. The incremental lifetime cancer risk, simulated by Monte Carlo simulation, was within the limits set by the US EPA, indicating an acceptable risk for the occupants. These results provide an additional scientific basis for protecting human health from exposure to indoor PAHs.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring , Benzo(a)pyrene/analysis , Risk Assessment , China
2.
Sci Total Environ ; 858(Pt 2): 159869, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36328252

ABSTRACT

Ultrafine particles (UFPs or PM0.1; aerodynamic diameter ≤ 0.1 µm) were monitored at a roadside site (RS) in a populated area of Hanoi, Vietnam. Meanwhile, UFPs and fine particles (FPs or PM2.5, aerodynamic diameter ≤ 2.5 µm) were monitored at an ambient site (AS), located at an on-campus a university, approximately 200 m away from the RS. Sampling was conducted in different seasons-summer, winter, and the transitional periods of summer-to-winter and winter-to-summer (STP and WTP, respectively). Carbonaceous and ionic species in UFPs and FPs-rarely investigated in the study area-were analyzed to observe the seasonal variations, characteristics of UFPs near the roadway, and spatial differences between the sites. The UFPs concentration at the AS was in the order of winter > STP > WTP > summer, whereas that of the FPs was winter > WTP > STP > summer. This seasonal variation of particle concentration was possibly affected by the meteorological conditions, which contribute to the highest concentration in winter. The higher FPs concentration in WTP than in STP resulted from the substantial increase in ionic concentrations, particularly sulfate, nitrate, and ammonium. This result indicates the effect of secondary formation processes under drizzle-like weather, which is typical during WTP in northern Vietnam. Compared with UFPs at the AS, traffic-related emissions were more noticeable in UFPs at the RS, including a higher EC concentration and lower OC/EC ratio. The possibility of particle growth under favorable conditions, including the presence of gas-phase pollutants and the availability of surface areas owing to high UFPs concentration in Hanoi, may explain the low correlation of the chemical components between UFPs and FPs in the sites. This study serves as a reference for further investigation of the relationship between UFPs and FPs under highly polluted conditions in big cities in Vietnam in future studies.


Subject(s)
Air Pollutants , Humans , Air Pollutants/analysis , Environmental Monitoring/methods , Vietnam , Particulate Matter/analysis , Cities , Seasons , Particle Size , Vehicle Emissions/analysis
3.
Mol Genet Genomic Med ; 9(4): e1648, 2021 04.
Article in English | MEDLINE | ID: mdl-33687153

ABSTRACT

BACKGROUND: Lupus nephritis is a common complication of systemic lupus erythematosus (SLE, OMIM #15200) in the Asian population and a main contributor to mortality and morbidity. In this study, we evaluate the variants on three genes STAT4, CDKN1A, and IRF5 and their association with lupus nephritis. METHOD: One hundred fifty-two SLE patients with confirmed lupus nephritis (through biopsy) and 76 healthy controls were recruited. Genotyping of SNPs on three gene STAT4, CDKN1A, and IRF5, phenotypic, and laboratory assessment were performed; renal biopsy and classification were carried out for the patient group. RESULTS: Carriers of rs7582694 C alleles on STAT4 have higher risk of lupus nephritis (OR 2.0; 95% CI [1.14, 3.19]; p = 0.015), at higher risk of hematuria and higher serum level of dsDNA antibodies compared to controls (p < 0.05) and were more likely to have nephrotic histopathology grading of class III or higher. No association was observed for CDKN1A; and no variation was observed for the IRF5 gene in both the study and control group. CONCLUSION: This study investigates the relationship between STAT4, CDKN1A, and IRF5 gene and SLE in a Vietnamese patient population. Patients with the C allele (STAT4) in rs7582694 were associated with a more severe disease phenotype.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/genetics , Interferon Regulatory Factors/genetics , Lupus Nephritis/genetics , Polymorphism, Single Nucleotide , STAT4 Transcription Factor/genetics , Adult , Female , Humans , Kidney/pathology , Lupus Nephritis/classification , Lupus Nephritis/pathology , Male , Vietnam
4.
J Air Waste Manag Assoc ; 71(1): 81-101, 2021 01.
Article in English | MEDLINE | ID: mdl-33034539

ABSTRACT

Using the laboratory-based fuel consumption models for predicting real-world fuel consumption requires the measurement of data under certain conditions to obtain high accuracy of predicted result. Therefore, it is necessary to develop a logging device for measuring the real-time fuel consumption and speed of vehicle on the road. This article presents a study on developing the on-board data logging device to collect real-world data of fuel consumption and speed for motorcycles with the update rate of 1 Hz. The instantaneous speed of the motorcycle was determined based on the rotational speed of the wheel and the wheel radius. Another module was used to determine the instantaneous fuel consumption rate (FR) though measuring the duration injection pulse. The relationship between the duration injection pulse and the injected amount of fuel was established with high correlation coefficient of 0.997. In addition, a filter was designed to remove noise in the dataset collected using the data logging device. The random errors in the speed and the FR profiles were detected and replaced, the percentage of these errors is 1.8% and 2.4%, respectively. The developed method is a precise one for transient fuel consumption and speed measurement. In chassis dynamometer test, the average deviation between steady speed measured by the chassis and the data logging device is only approximately 0.35%. At transient state, the biggest deviation between these two datasets is less than 3.5%. The average FR at steady speed measured by the developed method is slightly different from the one measured by the carbon balance method. The difference is 0.9%, 2.5%, and 0.25% at the speeds of 30 km/h, 50 km/h, and 70 km/h, respectively. Following the transient test cycle, the fuel consumption measured by the developed method is 4.35% lower than that determined by the carbon balance method. Implications: A robust method for collecting and processing the on-road instantaneous data of fuel consumption and speed was developed for motorcycles. The proposed method can record well the real-world driving data for motorcycles, including the fuel consumption and speed, with the update rate of 1 Hz. The filter was designed to minimize noise while maintaining data integrity of the collected dataset, the percentage of errors in the the speed and the FR profiles is 1.8% and 2.4%, respectively. The proposed method, therefore, can be used as effective tools for future studies relating to the fuel consumption and emission of motorcycles on the road.


Subject(s)
Automobile Driving , Vehicle Emissions , Motorcycles , Vehicle Emissions/analysis
5.
Environ Sci Pollut Res Int ; 27(24): 30661-30672, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32472507

ABSTRACT

PM0.1 has been believed to have adverse short- and long-term effects on human health. However, the information of PM0.1 that is needed to fully evaluate its influence on human health and environment is still scarce in many developing countries. This is a comprehensive study on the levels, chemical compositions, and source apportionment of PM0.1 conducted in Hanoi, Vietnam. Twenty-four-hour samples of PM0.1 were collected during the dry season (November to December 2015) at a mixed site to get the information on mass concentrations and chemical compositions. Multiple linear regression analysis was utilized to investigate the simultaneous influence of meteorological factors on fluctuations in the daily levels of PM0.1. Multiple linear regression models could explain about 50% of the variations of PM0.1 concentrations, in which wind speed is the most important variable. The average concentrations of organic carbon (OC), elemental carbon (EC), water-soluble ions (Ca2+, K+, Mg2+, Na+, NH4+, Cl-, NO3-, SO42-, C2O42-), and elements (Be, Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba, Tl, Pb, Na, Fe, Mg, K, and Ca) were 2.77 ± 0.90 µg m-3, 0.63 ± 0.28 µg m-3, 0.88 ± 0.39 µg m-3, and 0.05 ± 0.02 µg m-3, accounting for 51.23 ± 9.32%, 11.22 ± 2.10%, 16.28 ± 2.67%, and 1.11 ± 0.94%, respectively. A positive matrix factorization model revealed the contributions of five major sources to the PM0.1 mass including traffic (gasoline and diesel emissions, 46.28%), secondary emissions (31.18%), resident/commerce (12.23%), industry (6.05%), and road/construction (2.92%).


Subject(s)
Air Pollutants/analysis , Nanoparticles , Environmental Monitoring , Humans , Particulate Matter/analysis , Vehicle Emissions/analysis , Vietnam
6.
Chemosphere ; 254: 126749, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32339797

ABSTRACT

Volatile organic compounds (VOCs) are important air pollution issues because of their potential health effects, and the contribution to ground ozone and secondary particulate matter. In this study, 53 VOC species near nine roads in Hanoi were monitored by sampling and analyzed by GC-FID four times per day on weekdays and in the morning on the weekend, from December 2014 to January 2015. In parallel with VOC sampling, vehicle number was counted, and meteorological conditions were recorded. A large share of motorbikes was found, accounted for 82% of overall for all period, and 88% in rush hours. The average TVOC concentration was 305.1 ppb; while those of BTEX were 12.8/27.4/4.8/15.9/6.0 ppb for benzene/toluene/ethylbenzene/m,p-xylenes/o-xylene, respectively. Isopentane was the most abundant species of VOCs. A significant carcinogenic risk of benzene species was found. Ozone formation potential (OFP) of VOCs was of 1752.7 ppb. Levels of VOC species reflected well the transportation volume. Strong correlations between motorbike number related parameters and ethylbenzene were found. High correlations were also found among ethylbenzene and almost all other VOC species. It implied that the majority of VOCs near road emitted from the same source, which is motorbikes. The calculation using emission factors from COPERT 5 model with conditions of fleets in Hanoi showed that VOCs from motorbikes contributed to more than 90% of the VOC level.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Volatile Organic Compounds/analysis , Air Pollution , Benzene/analysis , Gasoline/analysis , Ozone/analysis , Particulate Matter/analysis , Pentanes , Toluene/analysis , Vietnam , Xylenes
7.
Article in English | MEDLINE | ID: mdl-31269756

ABSTRACT

This research investigated the distribution and contribution of polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) bound to particulate matter (PM) emitted from open burning of rice straw (RS) into the atmosphere in the north of Vietnam. The experiments were conducted to collect PM2.5 and total suspended particulates (TSP) prior to and during burning in the period of 2016-2018 in suburban areas of Hanoi. Nine PAHs and 18 NPAHs were determined using the HPLC-FL system. The results showed that the proportion of RS burning seasonally affects the variation of PAHs emission in atmospheric environment. The levels of nine PAHs from RS burning were 254.4 ± 87.8 µg g-1 for PM2.5 and 209.7 ± 89.5 µg g-1 for TSP. We observed the fact that, although fluoranthene (Flu) was the most abundant PAH among detected PAHs both in PM2.5 and TSP, the enrichment of Flu in TSP from burning smoke was higher than that in PM2.5 while the contribution of benzo[a]pyrene (BaP) and indeno[1,2,3- cd]pyrene (IDP) in PM2.5 from burning smoke were much higher than those in TSP. This research found that 1-nitropyrene (1-NP) and 6-nitrochrysene (6-NC) emit from RS burning with the same range with those from wood burning. The 2-nitrofluorene (2-NF) and 2-nitropyrene (2-NP) released from RS burning as the secondary NPAHs. This research provides a comprehensive contribution characterization of PAHs and NPAHs in PM with different size emitted from traditional local rice straw burning in the north of Vietnam. The results help to clarify the environmental behavior of toxic organic compounds from RS burning in Southeast Asia.


Subject(s)
Air Pollutants/analysis , Oryza , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Smoke/analysis , Coal/analysis , Environmental Monitoring , Fluorenes/analysis , Pyrenes/analysis , Vietnam
8.
Environ Sci Pollut Res Int ; 26(23): 24176-24189, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31228063

ABSTRACT

This paper develops the specific emission factors for buses in the real-world traffic conditions in the inner city of Hanoi, Vietnam. An engine stationary cycle consisting of 14 modes was developed based on the typical driving cycle of Hanoi buses which had been constructed with the application of Markov chain theory. This is the first engine stationary emissions test cycle constructed for heavy-duty engine in Vietnam. Based on this cycle, the country-specific emission factors (CSEFs) of air pollutants including CO, HC, NOx, CO2, and PM for buses in Hanoi have been developed using the emission measurements on the engine test bed. It is found that almost all developed emission factors are higher than those derived from the emission measurements to the ECE R49 on the same engine. These emission factors, therefore, can be used to improve the quality of the emission inventory of buses in Hanoi.


Subject(s)
Air Pollutants/analysis , Motor Vehicles , Vehicle Emissions/analysis , Carbon Dioxide/analysis , Carbon Monoxide/analysis , Cities , Markov Chains , Nitrogen Oxides/analysis , Particulate Matter/analysis , Vietnam
9.
J Air Waste Manag Assoc ; 69(4): 423-437, 2019 04.
Article in English | MEDLINE | ID: mdl-30388932

ABSTRACT

This paper develops a typical driving cycle for buses in Hanoi that does not require the deconstruction of the natural driving patterns. Real velocity-time data were collected along 15 routes in the inner city. The raw velocity-time series were preprocessed to remove errors, and smooth and denoise the data. These data, then, were tested for stationary behavior before being used in the construction of the driving cycle based on Markov chain theory. The 14 representative parameters of the driving cycle, including vehicle-specific power, which were extracted from 33 driving cycle parameters using the hierarchical agglomerative clustering method, were used to integrate the features of realistic driving patterns into the typical driving cycle. The conformity of the developed driving cycle with the real-world driving data was evaluated by the speed-acceleration frequency distribution (SAFD). A typical driving cycle for buses in Hanoi with a SAFD of 13.2% was developed. This is the first driving cycle developed for buses in Vietnam. Implications: A typical driving cycle was developed for the first time for buses in Hanoi. With the deviation in speed-acceleration frequency distribution (SAFD) reaching to 13.2%, the developed driving cycle reflects well the overall real-world driving data in the city. This driving cycle, therefore, can be applied for the development of the country-specific emission factors and emission inventories for buses which are a very good tool as well as useful information for integrated air quality management in Hanoi.


Subject(s)
Air Pollutants/analysis , Automobile Driving/statistics & numerical data , Environmental Monitoring/methods , Motor Vehicles/statistics & numerical data , Cities , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...