Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Bot ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115876

ABSTRACT

In the dynamic environment of plants, the interplay between light-dependent growth and iron nutrition is a recurring challenge. Plants respond to low iron levels by adjusting growth and physiology through enhanced iron acquisition from the rhizosphere and internal iron pool reallocation. Iron deficiency response assays and gene co-expression networks aid in documenting physiological reactions and unraveling gene regulatory cascades, offering insight into the interplay between hormonal and external signaling pathways. However, research directly exploring the significance of light in iron nutrition remains limited. This review provides an overview on iron deficiency regulation and its cross-connection with distinct light signals, focusing on transcription factor cascades and long-distance signaling. The circadian clock and retrograde signaling influence iron uptake and allocation. The light-activated shoot-to-root mobile transcription factor ELONGATED HYPOCOTYL5 (HY5) affects iron homeostasis responses in roots. Blue light triggers the formation of biomolecular condensates containing iron deficiency-induced protein complexes. The potential of exploiting the connection between light and iron signaling remains underutilized. With climate change and soil alkalinity on the rise, there is a need to develop crops with improved nutrient use efficiency and modified light dependencies. More research is needed to understand and leverage the interplay between light signaling and iron nutrition.

2.
Methods Mol Biol ; 2665: 1-22, 2023.
Article in English | MEDLINE | ID: mdl-37166588

ABSTRACT

Analysis of plant gene expression is important in determining iron (Fe) homeostasis gene functions during plant development or in response to biotic and abiotic factors. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has many advantages. It is fast, inexpensive, accurate, and reproducible in any lab. Furthermore, RT-qPCR can be scaled up to study several genes of interest in many biological samples from any organism. We hereby provide a straightforward protocol on RT-qPCR analysis using a 384-well format for large-scale gene expression studies on Fe-regulated responses. The protocol highlights in detail, the steps ranging from choice and design of qPCR analysis, collection of plant material and RNA preparation, cDNA synthesis, set up of qPCR and run, thorough analysis of qPCR run data, and display of multiple gene expression data for convenient interpretation.


Subject(s)
Gene Expression Profiling , Reverse Transcription , Gene Expression Profiling/methods , Real-Time Polymerase Chain Reaction/methods , RNA/genetics , Plants/genetics , Homeostasis/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL