Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 81: 102540, 2022 10.
Article in English | MEDLINE | ID: mdl-35914394

ABSTRACT

Neuroimaging studies are often limited by the number of subjects and cognitive processes that can be feasibly interrogated. However, a rapidly growing number of neuroscientific studies have collectively accumulated an extensive wealth of results. Digesting this growing literature and obtaining novel insights remains to be a major challenge, since existing meta-analytic tools are constrained to keyword queries. In this paper, we present Text2Brain, an easy to use tool for synthesizing brain activation maps from open-ended text queries. Text2Brain was built on a transformer-based neural network language model and a coordinate-based meta-analysis of neuroimaging studies. Text2Brain combines a transformer-based text encoder and a 3D image generator, and was trained on variable-length text snippets and their corresponding activation maps sampled from 13,000 published studies. In our experiments, we demonstrate that Text2Brain can synthesize meaningful neural activation patterns from various free-form textual descriptions. Text2Brain is available at https://braininterpreter.com as a web-based tool for efficiently searching through the vast neuroimaging literature and generating new hypotheses.


Subject(s)
Brain , Language , Brain/diagnostic imaging , Brain/physiology , Humans , Neuroimaging/methods
2.
Neuroimage ; 248: 118849, 2022 03.
Article in English | MEDLINE | ID: mdl-34965456

ABSTRACT

Task-based and resting-state represent the two most common experimental paradigms of functional neuroimaging. While resting-state offers a flexible and scalable approach for characterizing brain function, task-based techniques provide superior localization. In this paper, we build on recent deep learning methods to create a model that predicts task-based contrast maps from resting-state fMRI scans. Specifically, we propose BrainSurfCNN, a surface-based fully-convolutional neural network model that works with a representation of the brain's cortical sheet. BrainSurfCNN achieves exceptional predictive accuracy on independent test data from the Human Connectome Project, which is on par with the repeat reliability of the measured subject-level contrast maps. Conversely, our analyses reveal that a previously published benchmark is no better than group-average contrast maps. Finally, we demonstrate that BrainSurfCNN can generalize remarkably well to novel domains with limited training data.


Subject(s)
Brain Mapping/methods , Connectome/methods , Emotions , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Datasets as Topic , Humans , Reproducibility of Results , Rest
3.
Sci Adv ; 7(22)2021 05.
Article in English | MEDLINE | ID: mdl-34049888

ABSTRACT

Naturalistic stimuli, such as movies, activate a substantial portion of the human brain, invoking a response shared across individuals. Encoding models that predict neural responses to arbitrary stimuli can be very useful for studying brain function. However, existing models focus on limited aspects of naturalistic stimuli, ignoring the dynamic interactions of modalities in this inherently context-rich paradigm. Using movie-watching data from the Human Connectome Project, we build group-level models of neural activity that incorporate several inductive biases about neural information processing, including hierarchical processing, temporal assimilation, and auditory-visual interactions. We demonstrate how incorporating these biases leads to remarkable prediction performance across large areas of the cortex, beyond the sensory-specific cortices into multisensory sites and frontal cortex. Furthermore, we illustrate that encoding models learn high-level concepts that generalize to task-bound paradigms. Together, our findings underscore the potential of encoding models as powerful tools for studying brain function in ecologically valid conditions.

4.
Magn Reson Imaging ; 64: 101-121, 2019 12.
Article in English | MEDLINE | ID: mdl-31173849

ABSTRACT

Machine learning techniques have gained prominence for the analysis of resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Here, we present an overview of various unsupervised and supervised machine learning applications to rs-fMRI. We offer a methodical taxonomy of machine learning methods in resting-state fMRI. We identify three major divisions of unsupervised learning methods with regard to their applications to rs-fMRI, based on whether they discover principal modes of variation across space, time or population. Next, we survey the algorithms and rs-fMRI feature representations that have driven the success of supervised subject-level predictions. The goal is to provide a high-level overview of the burgeoning field of rs-fMRI from the perspective of machine learning applications.


Subject(s)
Brain Diseases/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Machine Learning , Magnetic Resonance Imaging/methods , Algorithms , Brain/diagnostic imaging , Brain Mapping/methods , Female , Humans , Male , Rest
5.
Neuroimage ; 200: 142-158, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31229658

ABSTRACT

Coordinate-based meta-analysis can provide important insights into mind-brain relationships. A popular approach for curated small-scale meta-analysis is activation likelihood estimation (ALE), which identifies brain regions consistently activated across a selected set of experiments, such as within a functional domain or mental disorder. ALE can also be utilized in meta-analytic co-activation modeling (MACM) to identify brain regions consistently co-activated with a seed region. Therefore, ALE aims to find consensus across experiments, treating heterogeneity across experiments as noise. However, heterogeneity within an ALE analysis of a functional domain might indicate the presence of functional sub-domains. Similarly, heterogeneity within a MACM analysis might indicate the involvement of a seed region in multiple co-activation patterns that are dependent on task contexts. Here, we demonstrate the use of the author-topic model to automatically determine if heterogeneities within ALE-type meta-analyses can be robustly explained by a small number of latent patterns. In the first application, the author-topic modeling of experiments involving self-generated thought (N = 179) revealed cognitive components fractionating the default network. In the second application, the author-topic model revealed that the left inferior frontal junction (IFJ) participated in multiple task-dependent co-activation patterns (N = 323). Furthermore, the author-topic model estimates compared favorably with spatial independent component analysis in both simulation and real data. Overall, the results suggest that the author-topic model is a flexible tool for exploring heterogeneity in ALE-type meta-analyses that might arise from functional sub-domains, mental disorder subtypes or task-dependent co-activation patterns. Code for this study is publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/meta-analysis/Ngo2019_AuthorTopic).


Subject(s)
Cerebral Cortex/physiology , Functional Neuroimaging/methods , Meta-Analysis as Topic , Models, Theoretical , Nerve Net/physiology , Adult , Attention/physiology , Cerebral Cortex/diagnostic imaging , Executive Function/physiology , Humans , Inhibition, Psychological , Likelihood Functions , Memory, Episodic , Nerve Net/diagnostic imaging , Theory of Mind/physiology , Thinking/physiology
6.
Hum Brain Mapp ; 39(9): 3793-3808, 2018 09.
Article in English | MEDLINE | ID: mdl-29770530

ABSTRACT

The results of most neuroimaging studies are reported in volumetric (e.g., MNI152) or surface (e.g., fsaverage) coordinate systems. Accurate mappings between volumetric and surface coordinate systems can facilitate many applications, such as projecting fMRI group analyses from MNI152/Colin27 to fsaverage for visualization or projecting resting-state fMRI parcellations from fsaverage to MNI152/Colin27 for volumetric analysis of new data. However, there has been surprisingly little research on this topic. Here, we evaluated three approaches for mapping data between MNI152/Colin27 and fsaverage coordinate systems by simulating the above applications: projection of group-average data from MNI152/Colin27 to fsaverage and projection of fsaverage parcellations to MNI152/Colin27. Two of the approaches are currently widely used. A third approach (registration fusion) was previously proposed, but not widely adopted. Two implementations of the registration fusion (RF) approach were considered, with one implementation utilizing the Advanced Normalization Tools (ANTs). We found that RF-ANTs performed the best for mapping between fsaverage and MNI152/Colin27, even for new subjects registered to MNI152/Colin27 using a different software tool (FSL FNIRT). This suggests that RF-ANTs would be useful even for researchers not using ANTs. Finally, it is worth emphasizing that the most optimal approach for mapping data to a coordinate system (e.g., fsaverage) is to register individual subjects directly to the coordinate system, rather than via another coordinate system. Only in scenarios where the optimal approach is not possible (e.g., mapping previously published results from MNI152 to fsaverage), should the approaches evaluated in this manuscript be considered. In these scenarios, we recommend RF-ANTs (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/registration/Wu2017_RegistrationFusion).


Subject(s)
Cerebral Cortex/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Adolescent , Adult , Algorithms , Cerebral Cortex/anatomy & histology , Female , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/statistics & numerical data , Male , Neuroimaging/statistics & numerical data , Organ Size , Software , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...