Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(9): 8876-8884, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36910961

ABSTRACT

Nitrogen-enriched polytriazine (NPT), a carbon nitride-based material, has received much attention for CO2 storage applications. However, to enhance the CO2 uptake capacity more efficiently, it is necessary to understand the interaction mechanism between CO2 molecules and NPT through appropriate modification of the structures. Here, we introduce a method to enhance the CO2 adsorption capacity of NPT by incorporating metal atoms such as Sn, Co, and Ni into the polytriazine network. DFT calculations were used to investigate the CO2 adsorption mechanism of the polytriazine frameworks by tracking the interactions between CO2 and the various interaction sites of NPT. By optimizing the geometry of the pure and metal-containing NPT frameworks, we calculated the binding energy of metal atoms in the NPT framework, the adsorption energy of CO2 molecules, and the charge transfer between CO2 molecules and the corresponding adsorption systems. In this work, we demonstrate that the CO2 adsorption capacity of NPT can be greatly enhanced by doping transition-metal atoms into the cavities of NPT.

2.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35957057

ABSTRACT

Uniform-size rutile TiO2 microrods were synthesized by simple molten-salt method with sodium chloride as reacting medium and different kinds of sodium phosphate salts as growth control additives to control the one-dimensional (1-D) crystal growth of particles. The effect of rutile and anatase ratios as a precursor was monitored for rod growth formation. Apart from uniform rod growth study, optical properties of rutile microrods were observed by UV-visible and photoluminescence (PL) spectroscopy. TiO2 materials with anatase and rutile phase show PL emission due to self-trapped exciton. It has been observed that synthesized rutile TiO2 rods show various PL emission peaks in the range of 400 to 900 nm for 355 nm excitation wavelengths. All PL emission appeared due to the oxygen vacancy present inside rutile TiO2 rods. The observed PL near the IR range (785 and 825 nm) was due to the formation of a self-trapped hole near to the surface of (110) which is the preferred orientation plane of synthesized rutile TiO2 microrods.

3.
Sci Rep ; 11(1): 10063, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33980904

ABSTRACT

SmCo5 and SmCo5-xCux magnetic particles were produced by co-precipitation followed by reduction diffusion. HRTEM confirmed the Cu substitution in the SmCo5 lattice. Non-magnetic Cu was substituted at "2c" site in the SmCo5 crystal lattice and effectively stopped the coupling in its surroundings. This decoupling effect decreased magnetic moment from SmCo5 (12.86 µB) to SmCo4Cu (10.58 µB) and SmCo3Cu2 (7.79 µB) and enhanced anisotropy energy from SmCo5 (10.87 Mega erg/cm3) to SmCo4Cu (14.05 Mega erg/cm3) and SmCo3Cu2 (14.78 Mega erg/cm3). Enhancement of the anisotropy energy increased the coercivity as its values for SmCo5, SmCo4Cu and SmCo3Cu2 were recorded as 4.5, 5.97 and 6.99 kOe respectively. Being six times cheaper as compared to Co, substituted Cu reduced the price of SmCo3Cu2 up to 2%. Extra 15% Co was added which not only enhanced the Mr value but also reduced the 5% of the total cost because of additional weight added to the SmCo3Cu2. Method reported in this work is most energy efficient method on the synthesis of Sm-Co-Cu ternary alloys until now.

4.
RSC Adv ; 11(51): 32376-32382, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-35495536

ABSTRACT

Nd2Fe14B is one of the most popular permanent magnets (PMs) possessing the best energy product (BH)max among the common PM materials. However, exchange-coupled nanocomposite magnets fabricated by embedding nanostructures of soft-phase magnetic materials into a hard-phase magnetic matrix manifest higher remanence and a higher energy product. Here we present the fabrication of exchange coupled Nd2Fe14B/Fe-Co magnetic nanocomposites using gel-combustion and diffusion-reduction processes. Pre-fabricated CoFe2O4 nanoparticles (NPs) of ∼5 nm diameter were incorporated into a Nd-Fe-B oxide matrix during its synthesis by gel-combustion. The obtained mixed oxide was further processed with oxidative annealing at 800 °C for 2 h and reductive annealing at 900 °C for 2 h to form a Nd2Fe14B/Fe-Co nanocomposite. Nanocomposites with different mol% of soft-phase were prepared and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and physical property measurement system (PPMS) to study their crystalline phase, morphology and magnetic behavior. Addition of 7.7 mol% of soft-phase was found to be optimum, producing a coercivity (H c) of 5.6 kOe and remanence (M r) of 54 emu g-1 in the nanocomposite.

SELECTION OF CITATIONS
SEARCH DETAIL
...