Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 355: 141748, 2024 May.
Article in English | MEDLINE | ID: mdl-38521109

ABSTRACT

Sugarcane bagasse is one of the most common Vietnamese agricultural waste, which possesses a large percentage of cellulose, making it an abundant and environmentally friendly source for the fabrication of cellulose carbon aerogel. Herein, waste sugarcane bagasse was used to synthesize cellulose aerogel using different crosslinking agents such as urea, polyvinyl alcohol (PVA) and sodium alginate (SA). The 3D porous network of cellulose aerogels was constructed by intermolecular hydrogen bonding, which was confirmed by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and nitrogen adsorption/desorption. Among the three cellulose aerogel samples, cellulose - SA aerogel (SB-CA-SA) has low density of 0.04 g m-3 and high porosity of 97.38%, leading to high surface area of 497.9 m2 g-1 with 55.67% micropores of activated carbon aerogel (SB-ACCA-SA). The salt adsorption capacity was high (17.87 mg g-1), which can be further enhanced to 31.40 mg g-1 with the addition of CNT. Moreover, the desalination process using the SB-ACCA-SA-CNT electrode was stable even after 50 cycles. The results show the great combination of cellulose from waste sugarcane bagasse with sodium alginate and carbon nanotubes in the fabrication of carbon materials as the CDI-utilized electrodes with high desalination capability and good durability.


Subject(s)
Nanotubes, Carbon , Saccharum , Cellulose/chemistry , Saccharum/chemistry , Alginates
2.
Nat Prod Res ; : 1-8, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37599639

ABSTRACT

Six compounds were isolated from the ethyl acetate extract of the stems of Miliusa velutina, including miliutine A acid (1), a new cyclofarnesane sesquiterpenoid; miliutine B methyl ester (2), a cyclofarnesane sesquiterpenoid which was determined the absolute configuration for the first time and four known phenol derivatives (3-6). NMR spectroscopic and mass spectrometry were used for identifying relative configurations. The assignments of the absolute configurations were determined based on Electronic Circular Dichroism (ECD) and NOESY spectra analysis. All six compounds were screened for their in vitro cytotoxic activities against HepG2 cell line using the SRB assay and they showed weak or none activities.

3.
Environ Res ; 236(Pt 2): 116789, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37517481

ABSTRACT

With the acceleration of global industrialization, organic pollutants have become a threat to ecological safety and human health. This work prepared TiO2/rice husk biochar (TiO2/BC) for removal of bisphenol A (BA) micropollutant in wastewater. Experiment results revealed a low BA removal efficiency by TiO2/BC was observed at 34.5% under the dark environment. However, the removal rate of BA by UV light-assisted TiO2/BC significantly increased to 97.6% in 1 h. The results also demonstrated that the removal performance of BA using TiO2/BC was 2.1times higher than that of commercial TiO2 (46.4%). Besides, the removal efficiency of BA by reused TiO2/BC after eight cycles slightly decreased by 12.8%, demonstrating the excellent properties of the prepared composite. TiO2/BC also exhibited high removal efficiency of BA (over 89%) from the synthetic wastewater sample, indicating the potential utilization of composite for removing BA in wastewater. This work provides a new way to turn biomass waste into useful material and effective method to remove micropollutant BA.

4.
Environ Res ; 229: 116000, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37127104

ABSTRACT

Titanium oxide-based photocatalysts (TOBPs) have been widely utilized as potential materials for numerous applications, such as wastewater treatment, water-splitting reactions, carbon dioxide (CO2) reduction and photosynthesis. However, the large bandgap of intrinsic TiO2 limits their absorption toward visible light, which is the central part of the solar spectrum, resulting in low photocatalytic activities under sunlight. To overcome this obstacle, several strategies, such as doping with either metal or non-metal elements or combining with other compounds, are efficient ways to reduce the bandgap of TiO2, leading to effectively extending their absorption toward the visible region and increasing their catalytic performance. In this review, we discussed the application of TOBPs for the photodegradation of hazardous organic pollutants in wastewater to produce quality reused water. The synthesis of TiO2 and the enhancement of photocatalytic activities of TOBPs by different techniques with detailed information were provided. Application of TOBPs for decomposing hazardous organic pollutants such as dyes, phenolic compounds and pharmaceuticals under optimum conditions have been listed. Also, the photodegradation mechanisms of hazardous organic compounds have been investigated. This work also brings ideas for future perspectives and research plan to inhibit the disadvantages and expand the application of TOBPs to remove toxic organic pollutants.


Subject(s)
Environmental Pollutants , Titanium , Photolysis , Water , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...