Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29993739

ABSTRACT

This paper details the systematic approach used to develop a viable clinical prototype of a therapeutic ultrasound applicator and discusses the rationale and deliberations that led to the design strategy. The applicator was specifically devised to treat chronic wounds and-to the best of the author's knowledge-is the first truly wearable device with a proven record of reducing healing time, directly translating to a reduction of healthcare costs. The prototype operates in the kHz (20-100) range of frequencies and uses noncavitational and nonthermal levels of ultrasound energy. Hence, in the absence of inertial cavitation and temperature elevation, the tissue-ultrasound interaction is considered to be dependent on stable cavitation (if any) and radiation force. The peak acoustic output pressure amplitude is limited to 55 kPa, corresponding to a spatial peak-temporal peak intensity of 100 mW/cm2. This level of intensity is considered to be safe to apply for extended (up to 4 h) periods of time. The patch-like applicator design is suitable to be embedded in wound dressing. With its lightweight (<20 g) and circular (40 mm dia) disk-shape architecture, the applicator is well suited for chronic wound treatment. A small ( n = 8 ) pilot study on the effects of the applicator on diabetic ulcers (DUs) healing time is presented. The average time to wound closure was 4.7 weeks for subjects treated with the active ultrasound applicator, compared to 12 weeks for subjects treated with a sham applicator, suggesting that patients with DUs may benefit from the proposed treatment.


Subject(s)
Diabetic Foot/therapy , Ultrasonic Therapy/instrumentation , Wound Healing/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Bandages , Equipment Design , Humans , Middle Aged , Ultrasonic Therapy/methods , Young Adult
2.
ACS Biomater Sci Eng ; 3(11): 2999-3006, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-33418720

ABSTRACT

Endothelial cell interactions with normal and cancerous breast epithelial cells have been widely studied in tissue growth and development, as well as in angiogenesis and metastasis. Despite the understanding that 3D multicellular architecture is critical to the cell phenotype, 3D vascular structures have not yet been cocultured with 3D breast spheroids in vitro. The objective of this study was therefore to create a hierarchical, multiscale model of vascular endothelial-breast epithelial cell interactions in which both cell types were assembled into their 3D architectures. The model was successfully fabricated by adding preformed breast spheroids onto preformed endothelial tube-like networks. Through this model, we observed that breast spheroids maintain vascular tube-like networks. Over time, breast epithelial cells migrate out of the spheroid structure along the endothelial networks. This research shows that 3D cell structures serve as an important building block for creating multicellular coculture models to study physiologically relevant cell-cell interactions.

3.
J Biomech ; 49(8): 1369-1380, 2016 05 24.
Article in English | MEDLINE | ID: mdl-26792289

ABSTRACT

Macrovascular endothelial injury, which may be caused by percutaneous intervention, requires endothelial cell directed collective migration to restore an intact endothelial monolayer. While interventions are often performed in arteries stiffened by cardiovascular disease, the effect of substrate stiffness on endothelial cell collective migration has not been examined. We studied porcine aortic endothelial cell directed collective migration using a modified cage assay on 4, 14, and 50kPa collagen-coated polyacrylamide gels. Total cell migration distance was measured over time, as were nuclear alignment and nuclear:total ß-catenin as measures of cell directedness and cell-cell junction integrity, respectively. In addition, fibronectin fibers were examined as a measure of extracellular matrix deposition and remodeling. We now show that endothelial cells collectively migrate farther on stiffer substrates by 24h. Cells were more directed in the migration direction on intermediate stiffness substrates from 12 to 24h, with an alignment peak 400-700µm back from the migratory interface. However, cells on the softest substrates had the highest cell-cell junction integrity. Cells on all substrates deposited fibronectin, however fibronectin fibers were most linear and aligned on the stiffer substrates. When Rho kinase (ROCK) was inhibited with Y27632, cells on soft substrates migrated farther and cells on both soft and stiff substrates were more directed. When α5 integrin was knocked down with siRNA, cells on stiffer substrates did not migrate as far and were less directed. These data suggest that ROCK-mediated myosin contractility inhibits endothelial cell collective migration on soft substrates, while cell-matrix interactions are critical to endothelial cell collective migration on stiff substrates.


Subject(s)
Endothelial Cells/physiology , Myosins/physiology , rho-Associated Kinases/physiology , Amides/pharmacology , Animals , Cell Communication , Cell Movement/drug effects , Cells, Cultured , Extracellular Matrix , Fibronectins/physiology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Swine , beta Catenin/physiology , rho-Associated Kinases/antagonists & inhibitors
4.
Cancer Res ; 71(10): 3649-57, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21576088

ABSTRACT

Recently, we reported that the ATP-binding cassette transporter 10 (ABCC10), also known as multidrug resistance protein 7 (MRP7), is able to confer resistance to a variety of anticancer agents, including taxanes. However, the in vivo functions of the pump have not been determined to any extent. In this study, we generated and analyzed Abcc10(-/-) mice to investigate the ability of Abcc10 to function as an endogenous resistance factor. Mouse embryo fibroblasts derived from Abcc10(-/-) mice were hypersensitive to docetaxel, paclitaxel, vincristine, and cytarabine (Ara-C) and exhibited increased cellular drug accumulation, relative to wild-type controls. Abcc10(-/-) null mice treated with paclitaxel exhibited increased lethality associated with neutropenia and marked bone marrow toxicity. In addition, toxicity in spleen and thymus was evident. These findings indicate that Abcc10 is dispensable for health and viability and that it is an endogenous resistance factor for taxanes, other natural product agents, and nucleoside analogues. This is the first demonstration that an ATP-binding cassette transporter other than P-glycoprotein can affect in vivo tissue sensitivity toward taxanes.


Subject(s)
Drug Resistance, Neoplasm , Multidrug Resistance-Associated Proteins/genetics , Paclitaxel/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Bone Marrow/metabolism , Cytarabine/pharmacology , Docetaxel , Female , Fibroblasts/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Taxoids/pharmacology , Vincristine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL