Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 427: 128144, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34979390

ABSTRACT

Despite the importance of (micro)plastics in the release of plastic additives, the leaching mechanism of organic plastic additives from various plastic materials is poorly understood. In this study, the equilibrium leaching of five highly hydrophobic ultraviolet (UV) stabilizers (UV326, UV327, UV328, UV329, and UV531) from three plastics (low-density polyethylene (LDPE), polyethylene terephthalate (PET), and polystyrene (PS)), was investigated employing acetonitrile-water cosolvent systems. Their extrapolated water solubilities were in the 0.15-0.54 µg L-1 range, limiting their transport as "dissolved" in water and (micro)plastics are likely those particulate carriers. The equilibrium leaching of UV stabilizers from plastics was better explained by the Flory-Huggins model incorporating the nonideal behavior caused by the size disparity between UV stabilizers and polymer materials and their compatibility. Specifically, leaching of UV stabilizers from LDPE showed a positive deviation from Raoult's law, whereas slight negative deviations were observed in PET and PS. In addition, the equilibrium concentration of the benzotriazoles in LDPE increased linearly with the volume fraction up to only 0.4%. These observations could be explained by the unfavorable interactions of UV stabilizers with polyethylene, indicating that polymer type should be also important when evaluating the fate of hydrophobic additives. Because equilibrium distribution of additives between (micro)plastics and water is crucial for evaluating the fate and transport of hydrophobic plastic additives, further studies on the leaching equilibrium of various additives from different plastic materials are necessary.


Subject(s)
Water Pollutants, Chemical , Plastics , Polyethylene , Polymers , Polystyrenes , Water Pollutants, Chemical/analysis
2.
Curr Med Mycol ; 6(2): 11-17, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33628976

ABSTRACT

BACKGROUND AND PURPOSE: Pityriasis versicolor (PV) is a common fungal skin infection caused by Malassezia species. Previous studies have shown that the prevalence of PV is influenced by geographic factors. The aim of the current study was to find the epidemiological characteristics of PV and distribution of Malassezia species in the secondary school students living in Hai Phong city, Vietnam. MATERIALS AND METHODS: This study was conducted on 1357 students within the age range of 10 - 16 years selected from four secondary schools in Hai Phong city. The students were screened for PV skin lesions from August 2016 to December 2017. The isolates of Malassezia from PV patients were analyzed by performing direct microscopy and culturing on modified Dixon agar plates, containing gentamicin, at 32oC for 7 days. In the next stage, the fungal strains obtained from patients with positive fungal cultures were identified using the CHROMagarTM Malassezia medium, polymerase chain reaction-restriction fragment length polymorphism techniques, and D1/D2 rDNA genome sequencing. RESULTS: Pityriasis versicolor was diagnosed in 305 (22.48%) students and confirmed by clinical appearance and direct examination. A total of 293 (96.07%) samples grew on modified Dixon agar. With regard to demographic characteristics, 50.49% of the PV cases were female, and 57.38% of cases resided in urban areas. Furthermore, 88.52% of the subjects had the illness duration of more than 6 months. Hypopigmented and erythematous skin lesions were also observed in the research participants, with hypopigmentation being the most frequent condition (97.05%). Most of the Malassezia fungal strains were isolated from the back (39.56%), face (23.99%), and chest (16.51%). Malassezia furfur and M. japonica accounted for PV in 96.25% and 3.75% of the cases, respectively. Furthermore, Malassezia furfur was distributed in both rural and urban areas, while M. japonica was found only in the urban areas. CONCLUSION: The findings of the present study were indicative of the high prevalence of Malassezia yeasts, mostly M. furfur, among the students in Hai Phong city, Vietnam.

SELECTION OF CITATIONS
SEARCH DETAIL
...