Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Biol Res ; 48: 15, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25885269

ABSTRACT

BACKGROUND: Excessive production of free radicals causes direct damage to biological molecules such as DNA, proteins, lipids, carbohydrates leading to tumor development and progression. Natural antioxidant molecules from phytochemicals of plant origin may directly inhibit either their production or limit their propagation or destroy them to protect the system. In the present study, Monodora myristica a non-timber forest product consumed in Cameroon as spice was screened for its free radical scavenging properties, antioxidant and enzymes protective activities. Its phenolic compound profile was also realized by HPLC. RESULTS: This study demonstrated that M. myristica has scavenging properties against DPPH(•), OH(•), NO(•), and ABTS(•) radicals which vary in a dose depending manner. It also showed an antioxidant potential that was comparable with that of Butylated Hydroxytoluene (BHT) and vitamin C used as standard. The aqueous ethanol extract of M. myristica barks (AEH); showed a significantly higher content in polyphenolic compounds (21.44 ± 0.24 mg caffeic acid/g dried extract) and flavonoid (5.69 ± 0.07 quercetin equivalent mg/g of dried weight) as compared to the other studied extracts. The HPLC analysis of the barks and leaves revealed the presence of several polyphenols. The acids (3,4-OH-benzoic, caffeic, gallic, O- and P- coumaric, syringic, vanillic), alcohols (tyrosol and OH-tyrosol), theobromine, quercetin, rutin, catechine and apigenin were the identified and quantified polyphenols. All the tested extracts demonstrated a high protective potential on the superoxide dismutase (SOD), catalase and peroxidase activities. CONCLUSION: Finally, the different extracts from M. myristica and specifically the aqueous ethanol extract reveal several properties such as higher free radical scavenging properties, significant antioxidant capacities and protective potential effects on liver enzymes.


Subject(s)
Annonaceae/chemistry , Antioxidants/pharmacology , Free Radical Scavengers/pharmacology , Plant Extracts/pharmacology , Polyphenols/chemistry , Spices , Benzothiazoles/metabolism , Biphenyl Compounds/metabolism , Cameroon , Catalase/drug effects , Chromatography, High Pressure Liquid , Flavonoids/analysis , Forests , Hydroxyl Radical/metabolism , In Vitro Techniques , Nitric Oxide/metabolism , Peroxidases/drug effects , Picrates/metabolism , Plant Bark/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Sulfonic Acids/metabolism , Superoxide Dismutase/drug effects
2.
Biol. Res ; 48: 1-17, 2015. graf, tab
Article in English | LILACS | ID: biblio-950779

ABSTRACT

BACKGROUND: Excessive production of free radicals causes direct damage to biological molecules such as DNA, proteins, lipids, carbohydrates leading to tumor development and progression. Natural antioxidant molecules from phytochemicals of plant origin may directly inhibit either their production or limit their propagation or destroy them to protect the system. In the present study, Monodora myristica a non-timber forest product consumed in Cameroon as spice was screened for its free radical scavenging properties, antioxidant and enzymes protective activities. Its phenolic compound profile was also realized by HPLC. RESULTS: This study demonstrated that M. myristica has scavenging properties against DPPH',OH',NO', and ABTS'radicals which vary in a dose depending manner. It also showed an antioxidant potential that was comparable with that of Butylated Hydroxytoluene (BHT) and vitamin C used as standard. The aqueous ethanol extract of M. myristica barks (AEH); showed a significantly higher content in polyphenolic compounds (21.44 ± 0.24 mg caffeic acid/g dried extract) and flavonoid (5.69 ± 0.07 quercetin equivalent mg/g of dried weight) as compared to the other studied extracts. The HPLC analysis of the barks and leaves revealed the presence of several polyphenols. The acids (3,4-OH-benzoic, caffeic, gallic, O- and P- coumaric, syringic, vanillic), alcohols (tyrosol and OH-tyrosol), theobromine, quercetin, rutin, catechine and apigenin were the identified and quantified polyphenols. All the tested extracts demonstrated a high protective potential on the superoxide dismutase (SOD), catalase and peroxidase activities. CONCLUSION: Finally, the different extracts from M. myristica and specifically the aqueous ethanol extract reveal several properties such as higher free radical scavenging properties, significant antioxidant capacities and protective potential effects on liver enzymes.


Subject(s)
Plant Extracts/pharmacology , Free Radical Scavengers/pharmacology , Spices , Annonaceae/chemistry , Polyphenols/chemistry , Antioxidants/pharmacology , Peroxidases/drug effects , Picrates/metabolism , Sulfonic Acids/metabolism , Superoxide Dismutase/drug effects , Flavonoids/analysis , Biphenyl Compounds/metabolism , In Vitro Techniques , Cameroon , Plant Extracts/chemistry , Catalase/drug effects , Forests , Chromatography, High Pressure Liquid , Hydroxyl Radical/metabolism , Plant Leaves/chemistry , Plant Bark/chemistry , Benzothiazoles/metabolism , Nitric Oxide/metabolism
3.
Biol Res ; 47: 54, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25723957

ABSTRACT

BACKGROUND: Zanthoxylum heitzii is a spice used to prepare several dishes and to treat tumors, syphilis, malaria, cardiac palpitations, urogenital infections in the west region of Cameroon, but the antitumor mechanisms and chemical composition are not yet investigated. This study was aimed to determine the antiproliferative effects of four extracts from the fruits and barks of Zanthoxyllum heitzii (Rutaceae) on apoptosis in human promyelocytic cells, their mechanisms and the chemical composition. The 3-(4, 5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the fifty percent inhibition (IC50) concentration of the cell lines after treatment. The effect on morphology was observed using a light or fluorescence microscopy. The rate of apoptosis and the cell cycle were measured using flow cytometry (FCM). The phytochemical analysis of the extract was carried with HPLC/MS methods. RESULTS: The phytochemical analysis of the extracts indicated the presence of four known polyphenols (Syringic acid, Juglon, Luteolin and Myricetin) in both fruits and barks of Z. heitzii but in different quantities. Syringic acid and Myricetin concentrations were between 17-21 fold higher in the fruits than the stem bark. Rhamnetin (393.35 µg/mL) and Oleuropein (63.10 µg/mL) were identified only in the stem barks of Z. heitzii. Among the four extracts tested for cytotoxicity properties, only the methanol extract of fruits and barks significantly inhibited cell proliferation of HL-60 cells with IC50 value of 20 µg/mL and 12 µg/mL respectively. HL-60 cells treated with Z. heitzii extracts significantly produced reactive oxygen species (ROS) with concurrent loss of mitochondrial membrane potential (MMP). Modifications in the DNA distribution and enhanced of G1/G0 phase cell cycle arrest were observed in a concentration dependent manner. CONCLUSIONS: Polyphenols from Z. heitzii plant exert inhibitory effect on HL-60 cells through the reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and cell cycle destabilization.


Subject(s)
Apoptosis/drug effects , Fruit/chemistry , G1 Phase Cell Cycle Checkpoints/drug effects , Mitochondria/physiology , Plant Bark/chemistry , Zanthoxylum/chemistry , Cameroon , Cell Proliferation/drug effects , Chromatography, High Pressure Liquid , Flow Cytometry , HL-60 Cells , Humans , Inhibitory Concentration 50 , Mass Spectrometry , Membrane Potential, Mitochondrial/drug effects , Microscopy, Fluorescence , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Polyphenols/analysis , Reactive Oxygen Species/analysis , Spices/analysis , Tetrazolium Salts , Thiazoles
4.
Biol. Res ; 47: 1-13, 2014. ilus, graf, tab
Article in English | LILACS | ID: biblio-950750

ABSTRACT

BACKGROUND: Zanthoxylum heitzii is a spice used to prepare several dishes and to treat tumors, syphilis, malaria, cardiac palpitations, urogenital infections in the west region of Cameroon, but the antitumor mechanisms and chemical composition are not yet investigated. This study was aimed to determine the antiproliferative effects of four extracts from the fruits and barks of Zanthoxyllum heitzii (Rutaceae) on apoptosis in human promyelocytic cells, their mechanisms and the chemical composition. The 3-(4, 5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the fifty percent inhibition (IC50) concentration of the cell lines after treatment. The effect on morphology was observed using a light or fluorescence microscopy. The rate of apoptosis and the cell cycle were measured using flow cytometry (FCM). The phytochemical analysis of the extract was carried with HPLC/MS methods. RESULTS: The phytochemical analysis of the extracts indicated the presence of four known polyphenols (Syringic acid, Juglon, Luteolin and Myricetin) in both fruits and barks of Z. heitzii but in different quantities. Syringic acid and Myricetin concentrations were between 17-21 fold higher in the fruits than the stem bark. Rhamnetin (393.35 µg/mL) and Oleuropein (63.10 µg/mL) were identified only in the stem barks of Z. heitzii. Among the four extracts tested for cytotoxicity properties, only the methanol extract of fruits and barks significantly inhibited cell proliferation of HL-60 cells with IC50 value of 20 µg/mL and 12 µg/mL respectively. HL-60 cells treated with Z. heitzii extracts significantly produced reactive oxygen species (ROS) with concurrent loss of mitochondrial membrane potential (MMP). Modifications in the DNA distribution and enhanced of G1/G0 phase cell cycle arrest were observed in a concentration dependent manner. CONCLUSIONS: Polyphenols from Z. heitzii plant exert inhibitory effect on HL-60 cells through the reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and cell cycle destabilization.


Subject(s)
Humans , Apoptosis/drug effects , Plant Bark/chemistry , Zanthoxylum/chemistry , G1 Phase Cell Cycle Checkpoints/drug effects , Fruit/chemistry , Mitochondria/physiology , Mass Spectrometry , Tetrazolium Salts , Thiazoles , Cameroon , Plant Extracts/isolation & purification , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Spices/analysis , Reactive Oxygen Species/analysis , HL-60 Cells , Inhibitory Concentration 50 , Cell Proliferation/drug effects , Membrane Potential, Mitochondrial/drug effects , Polyphenols/analysis , Flow Cytometry , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL