Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Foods ; 12(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37761073

ABSTRACT

The development of packaging technology has become a crucial part of the food industry in today's modern societies, which are characterized by technological advancements, industrialization, densely populated cities, and scientific advancements that have increased food production over the past 50 years despite the lack of agricultural land. Various types of food-packaging materials are utilized, with plastic being the most versatile. However, there are certain concerns with regards to the usage of plastic packaging because of unreacted monomers' potential migration from the polymer packaging to the food. The magnitude of monomer migration depends on numerous aspects, including the monomer chemistry, type of plastic packaging, physical-chemical parameters such as the temperature and pH, and food chemistry. The major concern for the presence of packaging monomers in food is that some monomers are endocrine-disrupting compounds (EDCs) with a capability to interfere with the functioning of vital hormonal systems in the human body. For this reason, different countries have resolved to enforce guidelines and regulations for packaging monomers in food. Additionally, many countries have introduced migration testing procedures and safe limits for packaging monomer migration into food. However, to date, several research studies have reported levels of monomer migration above the set migration limits due to leaching from the food-packaging materials into the food. This raises concerns regarding possible health effects on consumers. This paper provides a critical review on plastic food-contact materials' monomer migration, including that from biodegradable plastic packaging, the monomer migration mechanisms, the monomer migration chemistry, the key factors that affect the migration process, and the associated potential EDC human health risks linked to monomers' presence in food. The aim is to contribute to the existing knowledge and understanding of plastic food-packaging monomer migration.

2.
Environ Monit Assess ; 195(3): 427, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36843174

ABSTRACT

Lacustrine ecosystems have not been widely assessed for heavy metal contamination and associated health risks; yet, they could be accumulating these contaminants to the detriment of aquatic organisms and communities relying on them for various aspects. The water quality index (WQI) and concentrations of heavy metals including As, Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, and Zn in water, sediment, Oreochromis niloticus, and in the endemic and endangered Coptodon kottae in Lake Barombi Kotto in Cameroon were determined to evaluate fish heavy metal bioaccumulation, and heavy metal exposure risk posed to communities consuming these fish species. The WQI of the lake was found to be excellent with heavy metal concentrations that were lower than what was obtained in the sediments and fish samples. Mean heavy metal concentrations in sediment ranged from 0.86 ± 0.03 mg/kg for Cd to 560.1 ± 11.15 mg/kg for Fe. In both fish species, Fe, Mn, and Cu had the highest concentrations. Though the heavy metal concentrations in the lake water were low, heavy metal bioconcentration factors for both fish species were very high ranging from 1.6 for Fe to 1568 for Mn. The concentration patterns of heavy metals in the organs of both fish species followed the order bones > gut > muscle. Consumption of these two fish species contributes less than 1.0% of the permissible tolerable daily intake (PTDI) and provisional tolerable weekly intake (PTWI) of these metals with lead (Pb) having the potential to exceed permissible exposure levels when high amounts of these fish are consumed by adults.


Subject(s)
Cichlids , Metals, Heavy , Water Pollutants, Chemical , Animals , Ecosystem , Cadmium , Lead , Water Pollutants, Chemical/analysis , Environmental Monitoring , Metals, Heavy/analysis , Lakes , Eating , Risk Assessment , Geologic Sediments
3.
Environ Technol ; 44(14): 2157-2170, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35018877

ABSTRACT

Residual amounts of pharmaceutical compounds (PhCs) and by-products are continually released into surface water with effluents from conventional wastewater treatment plants (WWTPs). This study evaluated the ability of fungal isolate to remove selected PhCs [carbamazepine (CBZ), diclofenac (DCF) and ibuprofen (IBP)] from wastewater. The fungus used was Rhizopus sp. which was isolated from tuberous roots of cassava (Manihot esculenta). The isolate exhibited an important removal efficiency up to 100% and this was linked to ligninolytic enzymatic activity for lignin peroxidase (15.29 ± 2.69U/L) and manganese peroxidase (85.22 ± 4.26U/L), except laccase. This activity was optimum on day 9 of treatment. PhC metabolites were identified during the experiment revealing the existence of a biotransformation process catalysed by the isolated fungus. The disappearance of PhCs was attributed to their biosorption and biotransformation. However, it was not possible to establish a relationship between the ligninolytic enzymatic activity and the removal efficiency, which leads to the conclusion that there are other fungal metabolites which also play an important role in the biotransformation and biodegradation of the selected PhCs.


Subject(s)
Manihot , Water Pollutants, Chemical , Manihot/metabolism , Water , Biodegradation, Environmental , Wastewater , Pharmaceutical Preparations , Fungi/metabolism , Water Pollutants, Chemical/analysis
4.
Int J Environ Health Res ; 32(5): 1076-1094, 2022 May.
Article in English | MEDLINE | ID: mdl-33125286

ABSTRACT

Air pollution is associated with several detrimental health conditions. This study assessed comfort parameters, priority air pollutants, hydrogen sulphide (H2S), non-methane hydrocarbons (NMHCs), and volatile organic compounds (VOCs) in natural science departments in a university to understand their role in air pollutant concentrations in university environments and associated health risks. Levels of air pollutants in the departments varied. High CO2 concentrations existed in all departments with highest levels of NMHC and VOC observed in the biochemistry, microbiology and biotechnology (BMBT) department. Highest Air quality index value of 111.3 was recorded for NO2 in the BMBT department. Health risk associated with exposure to these pollutants was highest for occupants in the physiology, followed by the biodiversity, and finally BMBT department. Natural science departments seem to contribute significant amounts of H2S, NO2, NMHCs and TVOCs in university campuses. Additional ventilation and frequent monitoring of air quality in these departments are recommended.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Humans , Universities , Volatile Organic Compounds/analysis
5.
J Environ Manage ; 277: 111485, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33049614

ABSTRACT

Population growth followed by rapid development of industrialisation has caused serious environmental pollution with contaminants of emerging concern found in wastewater and surface water. As one of the most important resources for human survival, water is daily polluted by endocrine-disruptive chemicals (EDCs) including pharmaceuticals and personal care products, organic pollutants and heavy metals. Even at low concentrations in water bodies, chronic exposure to EDCs can cause adverse effects on human and environment health. The main concern with EDCs is the diseases they can generate in humans or wildlife by affecting the function of hormones in the body. Problems in the reproductive system, thyroid problems, Alzheimer's, cancer and obesity are some of the major effects of EDCs in humans. In wildlife, the reproductive system may be affected, including its levels of hatchability and vitellogenin. The efforts of the present review are on emphasising on the environmental concern on the occurrence and risk assessment of EDCs, their harmful effects in the ecosystem, human life, and wildlife, as a result of their incomplete removal from wastewater treatment plants. The review focuses on studies conducted in South Africa highlights the use of fungal bioreactors as a low-cost and eco-effective environmentally friendly wastewater treatment processes.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Ecosystem , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Humans , South Africa , Wastewater , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
J Expo Sci Environ Epidemiol ; 28(1): 55-63, 2018 01.
Article in English | MEDLINE | ID: mdl-27924816

ABSTRACT

Fifty-seven samples of soils commonly ingested in South Africa, Swaziland, Democratic Republic of Congo (DRC), and Togo were analyzed for the concentrations of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn) and their bioaccessibility in the human gastrointestinal tract. Bioaccessibility values were used to calculate daily intake, and hazard quotient of each trace element, and chronic hazard index (CHI) of each sample. Carcinogenic risk associated with As and Ni exposure were also calculated. Mean pseudo-total concentrations of trace elements in all samples were 7.2, 83.3, 77.1, 15.4, 28.6, 24.9, 56.1, 2.8, and 26.5 mg/kg for As, Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb, respectively. Percent bioaccessibility of Pb (13-49%) and Zn (38-56%) were highest among trace elements studied. Average daily intake values were lower than their respective reference doses for ell elements except for Pb in selected samples. Samples from DRC presented the highest health risks associated with trace element exposure with most of the samples having CHI values between 0.5 and 1.0. Some samples had higher than unacceptable values of carcinogenic risk associated with As and Ni exposure. Results indicate low trace element exposure risk from ingesting most of the soil samples.


Subject(s)
Environmental Exposure/analysis , Metals, Heavy/analysis , Soil , Trace Elements/analysis , Adolescent , Adult , Analysis of Variance , Carcinogenicity Tests , Child , Child, Preschool , Democratic Republic of the Congo/epidemiology , Eating , Environmental Monitoring/methods , Eswatini/epidemiology , Female , Humans , Male , Middle Aged , Pica/epidemiology , Risk Assessment , South Africa/epidemiology , Togo/epidemiology , Young Adult
7.
PLoS One ; 12(2): e0172517, 2017.
Article in English | MEDLINE | ID: mdl-28222184

ABSTRACT

Gold mining is a major source of metal and metalloid emissions into the environment. Studies were carried out in Krugersdorp, South Africa, to evaluate the ecological and human health risks associated with exposure to metals and metalloids in mine tailings contaminated soils. Concentrations of arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn) in soil samples from the area varied with the highest contamination factors (expressed as ratio of metal or metalloid concentration in the tailings contaminated soil to that of the control site) observed for As (3.5x102), Co (2.8x102) and Ni (1.1x102). Potential ecological risk index values for metals and metalloids determined from soil metal and metalloid concentrations and their respective risk factors were correspondingly highest for As (3.5x103) and Co (1.4x103), whereas Mn (0.6) presented the lowest ecological risk. Human health risk was assessed using Hazard Quotient (HQ), Chronic Hazard Index (CHI) and carcinogenic risk levels, where values of HQ > 1, CHI > 1 and carcinogenic risk values > 1×10-4 represent elevated risks. Values for HQ indicated high exposure-related risk for As (53.7), Cr (14.8), Ni (2.2), Zn (2.64) and Mn (1.67). Children were more at risk from heavy metal and metalloid exposure than adults. Cancer-related risks associated with metal and metalloid exposure among children were also higher than in adults with cancer risk values of 3×10-2 and 4×10-2 for As and Ni respectively among children, and 5×10-3 and 4×10-3 for As and Ni respectively among adults. There is significant potential ecological and human health risk associated with metal and metalloid exposure from contaminated soils around gold mine tailings dumps. This could be a potential contributing factor to a setback in the health of residents in informal settlements dominating this mining area as the immune systems of some of these residents are already compromised by high HIV prevalence.


Subject(s)
Ecology , Gold , Metalloids/toxicity , Metals, Heavy/toxicity , Mining , Soil Pollutants/toxicity , Adult , Age Factors , Animal Diseases/chemically induced , Animal Diseases/epidemiology , Animals , Animals, Wild , Child , Environmental Monitoring , Food Contamination , HIV Infections/epidemiology , HIV Infections/immunology , Hazardous Waste/analysis , Humans , Immunocompromised Host , Metalloids/analysis , Metals, Heavy/analysis , Neoplasms/chemically induced , Neoplasms/epidemiology , Risk Assessment , Soil Pollutants/analysis , South Africa/epidemiology
8.
Article in English | MEDLINE | ID: mdl-27792205

ABSTRACT

Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment.


Subject(s)
Bacteria/drug effects , Environmental Pollution/adverse effects , Metals, Heavy/adverse effects , Drug Resistance, Bacterial , Gold , Mining
9.
Ambio ; 45(3): 374-86, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26578255

ABSTRACT

Soils enriched with heavy metals from vehicular emission present a significant exposure route of heavy metals to individuals using unpaved roads. This study assessed the extent of Cd, Cr, Co, Cu, Ni, Pb and Zn contamination of soils along unpaved roads in Cameroon, and the health risks presented by incidental ingestion and dermal contact with the soils using metal contamination factor (CF) pollution load index, hazard quotients (HQ) and chronic hazard index (CHI). CF values obtained (0.9-12.2) indicate moderate to high contamination levels. HQ values for Cr, Cd and Pb exceeded the reference doses. Moderate health hazard exists for road users in the areas with intense anthropogenic activities and high average daily traffic (ADT) volume according to CHI values (1-4) obtained. The economy and quality of life in cities with unpaved roads could be threatened by health challenges resulting from long-term exposure to heavy metal derived from high ADT volumes.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Adult , Biological Availability , Cameroon , Child , Dust , Eating , Environmental Monitoring , Gastric Juice/chemistry , Humans , Metals, Heavy/chemistry , Motor Vehicles , Risk Assessment , Skin Absorption , Soil Pollutants/chemistry
10.
Int J Environ Res Public Health ; 12(8): 8933-55, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26264010

ABSTRACT

This study compared the granulometric properties, mineralogical composition and concentrations of major and trace element oxides of commonly ingested soils (geophagic soil) collected from different countries with a view of understanding how varied they may be in these properties and to understand the possible health implications of ingesting them. Soil samples were collected from three different countries (South Africa, Swaziland and Democratic Republic of Congo (DRC)) and their granulometric properties, concentrations of major and trace element oxides as well as mineralogical composition determined. Differences were observed in the granulometric properties of geophagic soil from the three different countries with most of them having <20% clay content. The soils also showed varied degrees of weathering with values of Chemical Index of Alteration (CIA) and Chemical Index of Weathering (CIW) being between 60% and 99.9% respectively. The mineral assemblages of the soils from South Africa and Swaziland were dominated by the primary minerals quartz and feldspar whereas soils from DRC had more of kaolinite, a secondary mineral than primary minerals. Soils from DRC were associated with silt, clay, Al2O3, and CIA unlike most samples from South Africa which were associated with SiO2, sand, K2O, CaO, and MgO. The soils from Swaziland were closely associated with silt, H2O and Fe2O3(t). These associations reflect the mineralogy of the samples. These soils are not likely to serve as nutrient supplements because of the low concentrations of the nutrient elements contained. The coarse texture of the samples may also result in dental destruction during mastication. Sieving of the soils before ingestion to remove coarse particles is recommended to reduce the potential health threat associated with the ingestion of coarse-textured soils.


Subject(s)
Minerals/analysis , Pica , Soil/chemistry , Trace Elements/analysis , Democratic Republic of the Congo , Eswatini , Humans , Pica/etiology , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...