Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Math Biosci ; 372: 109189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580079

ABSTRACT

The mosquito-borne disease (malaria) imposes significant challenges on human health, healthcare systems, and economic growth/productivity in many countries. This study develops and analyzes a model to understand the interplay between malaria dynamics, economic growth, and transient events. It uncovers varied effects of malaria and economic parameters on model outcomes, highlighting the interdependence of the reproduction number (R0) on both malaria and economic factors, and a reciprocal relationship where malaria diminishes economic productivity, while higher economic output is associated with reduced malaria prevalence. This emphasizes the intricate interplay between malaria dynamics and socio-economic factors. The study offers insights into malaria control and underscores the significance of optimizing external aid allocation, especially favoring an even distribution strategy, with the most significant reduction observed in an equal monthly distribution strategy compared to longer distribution intervals. Furthermore, the study shows that controlling malaria in high mosquito biting areas with limited aid, low technology, inadequate treatment, or low economic investment is challenging. The model exhibits a backward bifurcation implying that sustainability of control and mitigation measures is essential even when R0 is slightly less than one. Additionally, there is a parameter regime for which long transients are feasible. Long transients are critical for predicting the behavior of dynamic systems and identifying factors influencing transitions; they reveal reservoirs of infection, vital for disease control. Policy recommendations for effective malaria control from the study include prioritizing sustained control measures, optimizing external aid allocation, and reducing mosquito biting.


Subject(s)
Economic Development , Malaria , Malaria/economics , Malaria/prevention & control , Malaria/parasitology , Malaria/epidemiology , Humans , Economic Development/statistics & numerical data , Basic Reproduction Number/statistics & numerical data , Animals , Mosquito Vectors/parasitology , Mosquito Vectors/growth & development
2.
J Biol Dyn ; 17(1): 2287087, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38015715

ABSTRACT

HIV continues to be a major global health issue, having claimed millions of lives in the last few decades. While several empirical studies support the fact that proper nutrition is useful in the fight against HIV, very few studies have focused on developing and using mathematical modelling approaches to assess the association between HIV, human immune response to the disease, and nutrition. We develop a within-host model for HIV that captures the dynamic interactions between HIV, the immune system and nutrition. We find that increased viral activity leads to increased serum protein levels. We also show that the viral production rate is positively correlated with HIV viral loads, as is the enhancement rate of protein by virus. Although our numerical simulations indicate a direct correlation between dietary protein intake and serum protein levels in HIV-infected individuals, further modelling and clinical studies are necessary to gain comprehensive understanding of the relationship.


Subject(s)
HIV Infections , Humans , HIV Infections/epidemiology , Models, Biological , Dietary Proteins , Models, Theoretical , Blood Proteins
3.
Bull Math Biol ; 85(4): 31, 2023 03 12.
Article in English | MEDLINE | ID: mdl-36907932

ABSTRACT

Optimal control theory can be a useful tool to identify the best strategies for the management of infectious diseases. In most of the applications to disease control with ordinary differential equations, the objective functional to be optimized is formulated in monetary terms as the sum of intervention costs and the cost associated with the burden of disease. We present alternate formulations that express epidemiological outcomes via health metrics and reframe the problem to include features such as budget constraints and epidemiological targets. These alternate formulations are illustrated with a compartmental cholera model. The alternate formulations permit us to better explore the sensitivity of the optimal control solutions to changes in available budget or the desired epidemiological target. We also discuss some limitations of comprehensive cost assessment in epidemiology.


Subject(s)
Infections , Humans , Infections/therapy , Cholera/epidemiology , Cholera/prevention & control , Cholera/therapy , Developing Countries , Treatment Outcome
4.
Math Biosci ; 360: 108981, 2023 06.
Article in English | MEDLINE | ID: mdl-36803672

ABSTRACT

The COVID-19 pandemic continues to have a devastating impact on health systems and economies across the globe. Implementing public health measures in tandem with effective vaccination strategies have been instrumental in curtailing the burden of the pandemic. With the three vaccines authorized for use in the U.S. having varying efficacies and waning effects against major COVID-19 strains, understanding the impact of these vaccines on COVID-19 incidence and fatalities is critical. Here, we formulate and use mathematical models to assess the impact of vaccine type, vaccination and booster uptake, and waning of natural and vaccine-induced immunity on the incidence and fatalities of COVID-19 and to predict future trends of the disease in the U.S. when existing control measures are reinforced or relaxed. The results show a 5-fold reduction in the control reproduction number during the initial vaccination period and a 1.8-fold (2-fold) reduction in the control reproduction number during the initial first booster (second booster) uptake period, compared to the respective previous periods. Due to waning of vaccine-induced immunity, vaccinating up to 96% of the U.S. population might be required to attain herd immunity, if booster uptake is low. Additionally, vaccinating and boosting more people from the onset of vaccination and booster uptake, especially with the Pfizer-BioNTech and Moderna vaccines (which confer superior protection than the Johnson & Johnson vaccine) would have led to a significant reduction in COVID-19 cases and deaths in the U.S. Furthermore, adopting natural immunity-boosting measures is important in fighting COVID-19 and transmission rate reduction measures such as mask-use are critical in combating COVID-19. The emergence of a more transmissible COVID-19 variant, or early relaxation of existing control measures can lead to a more devastating wave, especially if transmission rate reduction measures and vaccination are relaxed simultaneously, while chances of containing the pandemic are enhanced if both vaccination and transmission rate reduction measures are reinforced simultaneously. We conclude that maintaining or improving existing control measures, and boosting with mRNA vaccines are critical in curtailing the burden of the pandemic in the U.S.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2 , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control
5.
Math Biosci Eng ; 20(1): 179-212, 2023 01.
Article in English | MEDLINE | ID: mdl-36650762

ABSTRACT

Three safe and effective vaccines against SARS-CoV-2 have played a major role in combating COVID-19 in the United States. However, the effectiveness of these vaccines and vaccination programs has been challenged by the emergence of new SARS-CoV-2 variants of concern. A new mathematical model is formulated to assess the impact of waning and boosting of immunity against the Omicron variant in the United States. To account for gradual waning of vaccine-derived immunity, we considered three vaccination classes that represent high, moderate and low levels of immunity. We showed that the disease-free equilibrium of the model is globally-asymptotically, for two special cases, if the associated reproduction number is less than unity. Simulations of the model showed that vaccine-derived herd immunity can be achieved in the United States via a vaccination-boosting strategy which entails fully vaccinating at least 59% of the susceptible populace followed by the boosting of about 72% of the fully-vaccinated individuals whose vaccine-derived immunity has waned to moderate or low level. In the absence of boosting, waning of immunity only causes a marginal increase in the average number of new cases at the peak of the pandemic, while boosting at baseline could result in a dramatic reduction in the average number of new daily cases at the peak. Specifically, for the fast immunity waning scenario (where both vaccine-derived and natural immunity are assumed to wane within three months), boosting vaccine-derived immunity at baseline reduces the average number of daily cases at the peak by about 90% (in comparison to the corresponding scenario without boosting of the vaccine-derived immunity), whereas boosting of natural immunity (at baseline) only reduced the corresponding peak daily cases (in comparison to the corresponding scenario without boosting of natural immunity) by approximately 62%. Furthermore, boosting of vaccine-derived immunity is more beneficial (in reducing the burden of the pandemic) than boosting of natural immunity. Finally, boosting vaccine-derived immunity increased the prospects of altering the trajectory of COVID-19 from persistence to possible elimination.


Subject(s)
COVID-19 , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Vaccination
6.
Math Biosci ; 355: 108936, 2023 01.
Article in English | MEDLINE | ID: mdl-36356891

ABSTRACT

Insecticide-treated nets (ITNs) have been useful and effective in mitigating the risk of malaria globally. However, due to misuse and normal/human-induced physical and chemical wear, the effectiveness of ITNs in combating malaria has been declining. Underlying heterogeneities in the nature of malaria, combined with environmental factors such as temperature lead to complex malaria transmission and control dynamics. In particular, temperature plays a significant role in determining the risk of malaria since it influences the growth and survival of mosquitoes and the malaria parasite. Here, a unifying mechanistic framework that integrates malaria dynamics with waning ITN-efficacy and temperature change is developed and used to assess the impact of interactions between significant sources of variation (e.g., temperature) and waning ITN-efficacy on the risk of malaria transmission and the success of ITN programs. The model exhibits a backward bifurcation when ITN-efficacy is constant implying that control efforts must be stepped up and sustained a bit longer even when the reproduction number is slightly less than one. The study shows that malaria is more effectively controlled with ITNs that have a longer lifespan and if ITNs are replaced before the end of their expiration period. Also, failing to account for waning ITN-efficacy leads to an underestimation of disease risk, burden, and effort level required to contain the disease. Local and global sensitivity analyses show that control and temperature-related parameters are primary drivers of the reproduction number and the human disease burden, highlighting the significance of temperature on malaria dynamics. Furthermore, the study shows that the human disease burden is optimal at a temperature of ≈28°C and that high seasonal variations can trigger major malaria outbreaks even in regions with low mean temperatures. Additionally, accounting for both seasonality and decay in ITN-efficacy leads to complex malaria patterns. To sum it up, insights into the sensitivity of malaria dynamics on temperature are useful in assessing the potential impact of changes in temperature on malaria risk. Also, a malaria control program, which ensures that ITNs are replaced regularly and early enough, and that educates at risk populations on proper use and care for ITNs is necessary for reducing the burden of malaria.


Subject(s)
Insecticide-Treated Bednets , Insecticides , Malaria , Animals , Humans , Insecticides/pharmacology , Temperature , Mosquito Control , Prevalence , Malaria/epidemiology , Malaria/prevention & control , Malaria/parasitology
7.
Appl Math Model ; 114: 447-465, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36281307

ABSTRACT

The effectiveness of control interventions against COVID-19 is threatened by the emergence of SARS-CoV-2 variants of concern. We present a mathematical model for studying the transmission dynamics of two of these variants (Delta and Omicron) in the United States, in the presence of vaccination, treatment of individuals with clinical symptoms of the disease and the use of face masks. The model is parameterized and cross-validated using observed daily case data for COVID-19 in the United States for the period from November 2021 (when Omicron first emerged) to March 2022. Rigorous qualitative analysis of the model shows that the disease-free equilibrium of the model is locally-asymptotically stable when the control reproduction number of the model (denoted by R c ) is less than one. This equilibrium is shown to be globally-asymptotically stable for a special case of the model, where disease-induced mortality is negligible and both vaccine-derived immunity in fully-vaccinated individuals and natural immunity do not wane, when the associated reproduction number is less than one. The epidemiological implication of the latter result is that the combined vaccination-boosting strategy can lead to the elimination of the pandemic if its implementation can bring (and maintain) the associated reproduction number to a value less than one. An analytical expression for the vaccine-derived herd immunity threshold is derived. Using this expression, together with the baseline values of the parameters of the parameterized model, we showed that the vaccine-derived herd immunity can be achieved in the United States (so that the pandemic will be eliminated) if at least 68 % of the population is fully-vaccinated with two of the three vaccines approved for use in the United States (Pfizer or Moderna vaccine). Furthermore, this study showed (as of the time of writing in March 2022) that the control reproduction number of the Omicron variant was approximately 3.5 times that of the Delta variant (the reproduction of the latter is computed to be ≈ 0.2782 ), indicating that Delta had practically died out and that Omicron has competitively-excluded Delta (to become the predominant variant in the United States). Based on our analysis and parameterization at the time of writing of this paper (March 2022), our study suggests that SARS-CoV-2 elimination is feasible by June 2022 if the current baseline level of the coverage of fully-vaccinated individuals is increased by about 20 % . The prospect of pandemic elimination is significantly improved if vaccination is combined with a face mask strategy that prioritizes moderately effective and high-quality masks. Having a high percentage of the populace wearing the moderately-effective surgical mask is more beneficial to the community than having low percentage of the populace wearing the highly-effective N95 masks. We showed that waning natural and vaccine-derived immunity (if considered individually) offer marginal impact on disease burden, except for the case when they wane at a much faster rate (e.g., within three months), in comparison to the baseline (estimated to be within 9 months to a year). Treatment of symptomatic individuals has marginal effect in reducing daily cases of SARS-CoV-2, in comparison to the baseline, but it has significant impact in reducing daily hospitalizations. Furthermore, while treatment significantly reduces daily hospitalizations (and, consequently, deaths), the prospects of COVID-19 elimination in the United States are significantly enhanced if investments in control resources are focused on mask usage and vaccination rather than on treatment.

8.
R Soc Open Sci ; 9(11): 220685, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36405633

ABSTRACT

Insecticide-treated net (ITN) is the most applicable and cost-effective malaria intervention measure in sub-Saharan Africa and elsewhere. Although ITNs have been widely distributed to malaria-endemic regions in the past, their success has been threatened by misuses (in fishing, agriculture etc.) and decay in ITN efficacy. Decision-making in using the ITNs depends on multiple coevolving factors: malaria prevalence, mosquito density, ITN availability and its efficacy, and other socio-economic determinants. While ITN misuse increases as the efficacy of ITNs declines, high efficacy also impedes proper use due to free-riding. This irrational usage leads to increased malaria prevalence, thereby worsening malaria control efforts. It also remains unclear if the optimum ITN use for malaria elimination can be achieved under such an adaptive social learning process. Here, we incorporate evolutionary game theory into a disease transmission model to demonstrate these behavioural interactions and their impact on malaria prevalence. We show that social optimum usage is a function of transmission potential, ITN efficacy and mosquito demography. Under specific parameter regimes, our model exhibits patterns of ITN usage similar to observed data from parts of Africa. Our study suggests that the provision of financial incentives as prompt feedback to improper ITN use can reduce misuse and contribute positively towards malaria elimination efforts in Africa and elsewhere.

9.
Infect Dis Model ; 7(4): 709-727, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36097593

ABSTRACT

The ongoing COVID-19 pandemic has been a major global health challenge since its emergence in 2019. Contrary to early predictions that sub-Saharan Africa (SSA) would bear a disproportionate share of the burden of COVID-19 due to the region's vulnerability to other infectious diseases, weak healthcare systems, and socioeconomic conditions, the pandemic's effects in SSA have been very mild in comparison to other regions. Interestingly, the number of cases, hospitalizations, and disease-induced deaths in SSA remain low, despite the loose implementation of non-pharmaceutical interventions (NPIs) and the low availability and administration of vaccines. Possible explanations for this low burden include epidemiological disparities, under-reporting (due to limited testing), climatic factors, population structure, and government policy initiatives. In this study, we formulate a model framework consisting of a basic model (in which only susceptible individuals are vaccinated), a vaccine-structured model, and a hybrid vaccine-age-structured model to assess the dynamics of COVID-19 in West Africa (WA). The framework is trained with a portion of the confirmed daily COVID-19 case data for 16 West African countries, validated with the remaining portion of the data, and used to (i) assess the effect of age structure on the incidence of COVID-19 in WA, (ii) evaluate the impact of vaccination and vaccine prioritization based on age brackets on the burden of COVID-19 in the sub-region, and (iii) explore plausible reasons for the low burden of COVID-19 in WA compared to other parts of the world. Calibration of the model parameters and global sensitivity analysis show that asymptomatic youths are the primary drivers of the pandemic in WA. Also, the basic and control reproduction numbers of the hybrid vaccine-age-structured model are smaller than those of the other two models indicating that the disease burden is overestimated in the models which do not account for age-structure. This result is confirmed through the vaccine-derived herd immunity thresholds. In particular, a comprehensive analysis of the basic (vaccine-structured) model reveals that if 84%(73%) of the West African populace is fully immunized with the vaccines authorized for use in WA, vaccine-derived herd immunity can be achieved. This herd immunity threshold is lower (68%) for the hybrid model. Also, all three thresholds are lower (60% for the basic model, 51% for the vaccine-structured model, and 48% for the hybrid model) if vaccines of higher efficacies (e.g., the Pfizer or Moderna vaccine) are prioritized, and higher if vaccines of lower efficacy are prioritized. Simulations of the models show that controlling the COVID-19 pandemic in WA (by reducing transmission) requires a proactive approach, including prioritizing vaccination of more youths or vaccination of more youths and elderly simultaneously. Moreover, complementing vaccination with a higher level of mask compliance will improve the prospects of containing the pandemic. Additionally, simulations of the model predict another COVID-19 wave (with a smaller peak size compared to the Omicron wave) by mid-July 2022. Furthermore, the emergence of a more transmissible variant or easing the existing measures that are effective in reducing transmission will result in more devastating COVID-19 waves in the future. To conclude, accounting for age-structure is important in understanding why the burden of COVID-19 has been low in WA and sustaining the current vaccination level, complemented with the WHO recommended NPIs is critical in curbing the spread of the disease in WA.

10.
J Theor Biol ; 555: 111281, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36154815

ABSTRACT

The mosquito-borne disease, malaria, continues to impose a devastating health and economic burden worldwide. In malaria-endemic areas, insecticide-treated nets (ITNs) have been useful in curtailing the burden of the disease. However, mosquito resistance to insecticides, decay in ITN efficacy, net attrition, etc., undermine the effectiveness of ITNs in combatting malaria. In this study, mathematical models that account for asymptomatic infectious humans (through a partially immune class or a separate asymptomatic infectious class), insecticide resistance, and decay in ITN efficacy are proposed and analyzed. Analytical and numerical results of the models when ITN efficacy is constant show that there are parameter regimes for which a backward bifurcation occurs. Local and global sensitivity analyses are performed to identify parameters (some of which are potential targets for disease control) with the most significant influence on the control reproduction (Rc) and disease prevalence. These influential parameters include the maximum biting rate of resistant mosquitoes, ITN coverage, initial ITN efficacy against sensitive mosquitoes, the probability that an infectious mosquito (human) infects a susceptible human (mosquito), and the rate at which adult mosquitoes develop (lose) resistance to insecticides. Simulations of the models show that accounting for asymptomatic infectious humans through a separate class, or not accounting for the decay in ITN efficacy leads to an underestimation of disease burden. In particular, if the initial efficacy of ITNs against sensitive and resistance mosquitoes is 96%, the minimum ITN coverage required to reduce Rc below one (and hence, contain malaria) is approximately 11% (27%) lower when ITN efficacy is averaged (constant) for a model with a separate asymptomatic class. For the model with a partially immune class and decaying ITN efficacy, reducing Rc below one is impossible even if the entire populace uses ITNs. The study shows that replacing ITNs before their prescribed lifespans, or designing ITNs with longer lifespans is important for malaria control. Furthermore, the study shows that piperonyl butoxide (PBO) ITNs (which inhibit or reverse insecticide resistance) outperform regular ITNs in malaria control. Hence, prospects for effectively controlling malaria are enhanced by widespread use of high quality ITNs (e.g. PBO ITNs), especially if the useful lifespans of the ITNs are long enough and the ITNs are replaced before the end of their useful lifespans.


Subject(s)
Culicidae , Insecticide-Treated Bednets , Insecticides , Malaria , Humans , Adult , Animals , Insecticide Resistance , Insecticides/pharmacology , Mosquito Control/methods , Piperonyl Butoxide , Malaria/prevention & control , Malaria/epidemiology
11.
R Soc Open Sci ; 8(9): 210699, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34527275

ABSTRACT

Dynamic models are used to assess the impact of three types of face masks (cloth masks, surgical/procedure masks and respirators) in controlling the COVID-19 pandemic in the USA. We showed that the pandemic would have failed to establish in the USA if a nationwide mask mandate, based on using respirators with moderately high compliance, had been implemented during the first two months of the pandemic. The other mask types would fail to prevent the pandemic from becoming established. When mask usage compliance is low to moderate, respirators are far more effective in reducing disease burden. Using data from the third wave, we showed that the epidemic could be eliminated in the USA if at least 40% of the population consistently wore respirators in public. Surgical masks can also lead to elimination, but requires compliance of at least 55%. Daily COVID-19 mortality could be eliminated in the USA by June or July 2021 if 95% of the population opted for either respirators or surgical masks from the beginning of the third wave. We showed that the prospect of effective control or elimination of the pandemic using mask-based strategy is greatly enhanced if combined with other non-pharmaceutical interventions (NPIs) that significantly reduce the baseline community transmission. By slightly modifying the model to include the effect of a vaccine against COVID-19 and waning vaccine-derived and natural immunity, this study shows that the waning of such immunity could trigger multiple new waves of the pandemic in the USA. The number, severity and duration of the projected waves depend on the quality of mask type used and the level of increase in the baseline levels of other NPIs used in the community during the onset of the third wave of the pandemic in the USA. Specifically, no severe fourth or subsequent wave of the pandemic will be recorded in the USA if surgical masks or respirators are used, particularly if the mask use strategy is combined with an increase in the baseline levels of other NPIs. This study further emphasizes the role of human behaviour towards masking on COVID-19 burden, and highlights the urgent need to maintain a healthy stockpile of highly effective respiratory protection, particularly respirators, to be made available to the general public in times of future outbreaks or pandemics of respiratory diseases that inflict severe public health and socio-economic burden on the population.

12.
Front Public Health ; 9: 654299, 2021.
Article in English | MEDLINE | ID: mdl-34368043

ABSTRACT

There are many outstanding questions about how to control the global COVID-19 pandemic. The information void has been especially stark in the World Health Organization Africa Region, which has low per capita reported cases, low testing rates, low access to therapeutic drugs, and has the longest wait for vaccines. As with all disease, the central challenge in responding to COVID-19 is that it requires integrating complex health systems that incorporate prevention, testing, front line health care, and reliable data to inform policies and their implementation within a relevant timeframe. It requires that the population can rely on the health system, and decision-makers can rely on the data. To understand the process and challenges of such an integrated response in an under-resourced rural African setting, we present the COVID-19 strategy in Ifanadiana District, where a partnership between Malagasy Ministry of Public Health (MoPH) and non-governmental organizations integrates prevention, diagnosis, surveillance, and treatment, in the context of a model health system. These efforts touch every level of the health system in the district-community, primary care centers, hospital-including the establishment of the only RT-PCR lab for SARS-CoV-2 testing outside of the capital. Starting in March of 2021, a second wave of COVID-19 occurred in Madagascar, but there remain fewer cases in Ifanadiana than for many other diseases (e.g., malaria). At the Ifanadiana District Hospital, there have been two deaths that are officially attributed to COVID-19. Here, we describe the main components and challenges of this integrated response, the broad epidemiological contours of the epidemic, and how complex data sources can be developed to address many questions of COVID-19 science. Because of data limitations, it still remains unclear how this epidemic will affect rural areas of Madagascar and other developing countries where health system utilization is relatively low and there is limited capacity to diagnose and treat COVID-19 patients. Widespread population based seroprevalence studies are being implemented in Ifanadiana to inform the COVID-19 response strategy as health systems must simultaneously manage perennial and endemic disease threats.


Subject(s)
COVID-19 , COVID-19 Testing , Humans , Madagascar/epidemiology , Pandemics , SARS-CoV-2 , Seroepidemiologic Studies
13.
Front Public Health ; 9: 709369, 2021.
Article in English | MEDLINE | ID: mdl-34368071

ABSTRACT

A novel coronavirus emerged in December of 2019 (COVID-19), causing a pandemic that inflicted unprecedented public health and economic burden in all nooks and corners of the world. Although the control of COVID-19 largely focused on the use of basic public health measures (primarily based on using non-pharmaceutical interventions, such as quarantine, isolation, social-distancing, face mask usage, and community lockdowns) initially, three safe and highly-effective vaccines (by AstraZeneca Inc., Moderna Inc., and Pfizer Inc.), were approved for use in humans in December 2020. We present a new mathematical model for assessing the population-level impact of these vaccines on curtailing the burden of COVID-19. The model stratifies the total population into two subgroups, based on whether or not they habitually wear face mask in public. The resulting multigroup model, which takes the form of a deterministic system of nonlinear differential equations, is fitted and parameterized using COVID-19 cumulative mortality data for the third wave of the COVID-19 pandemic in the United States. Conditions for the asymptotic stability of the associated disease-free equilibrium, as well as an expression for the vaccine-derived herd immunity threshold, are rigorously derived. Numerical simulations of the model show that the size of the initial proportion of individuals in the mask-wearing group, together with positive change in behavior from the non-mask wearing group (as well as those in the mask-wearing group, who do not abandon their mask-wearing habit) play a crucial role in effectively curtailing the COVID-19 pandemic in the United States. This study further shows that the prospect of achieving vaccine-derived herd immunity (required for COVID-19 elimination) in the U.S., using the Pfizer or Moderna vaccine, is quite promising. In particular, our study shows that herd immunity can be achieved in the U.S. if at least 60% of the population are fully vaccinated. Furthermore, the prospect of eliminating the pandemic in the U.S. in the year 2021 is significantly enhanced if the vaccination program is complemented with non-pharmaceutical interventions at moderate increased levels of compliance (in relation to their baseline compliance). The study further suggests that, while the waning of natural and vaccine-derived immunity against COVID-19 induces only a marginal increase in the burden and projected time-to-elimination of the pandemic, adding the impacts of therapeutic benefits of the vaccines into the model resulted in a dramatic reduction in the burden and time-to-elimination of the pandemic.


Subject(s)
COVID-19 , Vaccines , Communicable Disease Control , Humans , Immunity, Herd , Pandemics , SARS-CoV-2 , United States/epidemiology
14.
J Biol Dyn ; 15(1): 342-366, 2021 12.
Article in English | MEDLINE | ID: mdl-34182892

ABSTRACT

We propose two models inspired by the COVID-19 pandemic: a coupled disease-human behaviour (or disease-game theoretic), and a coupled disease-human behaviour-economic model, both of which account for the impact of social-distancing on disease control and economic growth. The models exhibit rich dynamical behaviour including multistable equilibria, a backward bifurcation, and sustained bounded periodic oscillations. Analyses of the first model suggests that the disease can be eliminated if everybody practices full social-distancing, but the most likely outcome is some level of disease coupled with some level of social-distancing. The same outcome is observed with the second model when the economy is weaker than the social norms to follow health directives. However, if the economy is stronger, it can support some level of social-distancing that can lead to disease elimination.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Game Theory , Pandemics/economics , Physical Distancing , COVID-19 , Humans
15.
J R Soc Interface ; 18(178): 20210165, 2021 05.
Article in English | MEDLINE | ID: mdl-33947225

ABSTRACT

When a rare pathogen emerges to cause a pandemic, it is critical to understand its dynamics and the impact of mitigation measures. We use experimental data to parametrize a temperature-dependent model of Zika virus (ZIKV) transmission dynamics and analyse the effects of temperature variability and control-related parameters on the basic reproduction number (R0) and the final epidemic size of ZIKV. Sensitivity analyses show that these two metrics are largely driven by different parameters, with the exception of temperature, which is the dominant driver of epidemic dynamics in the models. Our R0 estimate has a single optimum temperature (≈30°C), comparable to other published results (≈29°C). However, the final epidemic size is maximized across a wider temperature range, from 24 to 36°C. The models indicate that ZIKV is highly sensitive to seasonal temperature variation. For example, although the model predicts that ZIKV transmission cannot occur at a constant temperature below 23°C (≈ average annual temperature of Rio de Janeiro, Brazil), the model predicts substantial epidemics for areas with a mean temperature of 20°C if there is seasonal variation of 10°C (≈ average annual temperature of Tampa, Florida). This suggests that the geographical range of ZIKV is wider than indicated from static R0 models, underscoring the importance of climate dynamics and variation in the context of broader climate change on emerging infectious diseases.


Subject(s)
Zika Virus Infection , Zika Virus , Brazil , Florida , Humans , Mosquito Vectors , Temperature , Zika Virus Infection/epidemiology
16.
J Theor Biol ; 521: 110692, 2021 07 21.
Article in English | MEDLINE | ID: mdl-33771612

ABSTRACT

Non-pharmaceutical interventions (NPIs) involving social-isolation strategies such as self-quarantine (SQ) and social-distancing (SD) are useful in controlling the spread of infections that are transmitted through human-to-human contacts, e.g., respiratory diseases such as COVID-19. In the absence of a safe and effective cure or vaccine during the first ten months of the COVID-19 pandemic, countries around the world implemented these social-isolation strategies and other NPIs to reduce COVID-19 transmission. But, individual and public perception play a crucial role in the success of any social-isolation measure. Thus, in spite of governments' initiatives to use NPIs to combat COVID-19 in many countries around the world, individual choices rendered social-isolation unsuccessful in some of these countries. This resulted in huge outbreaks that imposed a substantial morbidity, mortality, hospitalization, economic, etc., toll on human lives. In particular, human choices pose serious challenges to public health strategic decision-making in controlling the COVID-19 pandemic. To unravel the impact of this behavioral response to social-isolation on the burden of the COVID-19 pandemic, we develop a model framework that integrates COVID-19 transmission dynamics with a multi-strategy evolutionary game approach of individual decision-making. We use this integrated framework to characterize the evolution of human choices in social-isolation as the disease progresses and public health control measures such as mandatory lockdowns are implemented. Analysis of the model illustrates that SD plays a major role in reducing the burden of the disease compared to SQ. Parameter estimation using COVID-19 incidence data, as well as different lockdown data sets from India, and scenario analysis involving a combination of Voluntary-Mandatory implementation of SQ and SD shows that the effectiveness of this approach depends on the type of isolation, and the time and period of implementation of the selected isolation measure during the outbreak.


Subject(s)
COVID-19 , Pandemics , Communicable Disease Control , Humans , India , Pandemics/prevention & control , Quarantine , SARS-CoV-2
17.
Infect Dis Model ; 6: 148-168, 2021.
Article in English | MEDLINE | ID: mdl-33474518

ABSTRACT

The novel coronavirus (COVID-19) pandemic that emerged from Wuhan city in December 2019 overwhelmed health systems and paralyzed economies around the world. It became the most important public health challenge facing mankind since the 1918 Spanish flu pandemic. Various theoretical and empirical approaches have been designed and used to gain insight into the transmission dynamics and control of the pandemic. This study presents a primer for formulating, analysing and simulating mathematical models for understanding the dynamics of COVID-19. Specifically, we introduce simple compartmental, Kermack-McKendrick-type epidemic models with homogeneously- and heterogeneously-mixed populations, an endemic model for assessing the potential population-level impact of a hypothetical COVID-19 vaccine. We illustrate how some basic non-pharmaceutical interventions against COVID-19 can be incorporated into the epidemic model. A brief overview of other kinds of models that have been used to study the dynamics of COVID-19, such as agent-based, network and statistical models, is also presented. Possible extensions of the basic model, as well as open challenges associated with the formulation and theoretical analysis of models for COVID-19 dynamics, are suggested.

18.
Glob Chang Biol ; 27(1): 84-93, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33037740

ABSTRACT

In the aftermath of the 2015 pandemic of Zika virus (ZIKV), concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature-dependent transmission model for ZIKV to project climate change impacts on transmission suitability risk by mid-century (a generation into the future). Based on these model predictions, in the worst-case scenario, over 1.3 billion new people could face suitable transmission temperatures for ZIKV by 2050. The next generation will face substantially increased ZIKV transmission temperature suitability in North America and Europe, where naïve populations might be particularly vulnerable. Mitigating climate change even to moderate emissions scenarios could significantly reduce global expansion of climates suitable for ZIKV transmission, potentially protecting around 200 million people. Given these suitability risk projections, we suggest an increased priority on research establishing the immune history of vulnerable populations, modeling when and where the next ZIKV outbreak might occur, evaluating the efficacy of conventional and novel intervention measures, and increasing surveillance efforts to prevent further expansion of ZIKV.


Subject(s)
Aedes , Zika Virus Infection , Zika Virus , Animals , Europe , Humans , Mosquito Vectors , North America , Temperature , Zika Virus Infection/epidemiology
19.
Math Biosci Eng ; 17(6): 7192-7220, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33378893

ABSTRACT

A mathematical model is designed and used to study the transmission dynamics and control of COVID-19 in Nigeria. The model, which was rigorously analysed and parametrized using COVID-19 data published by the Nigeria Centre for Disease Control (NCDC), was used to assess the community-wide impact of various control and mitigation strategies in some jurisdictions within Nigeria (notably the states of Kano and Lagos, and the Federal Capital Territory, Abuja). Numerical simulations of the model showed that COVID-19 can be effectively controlled in Nigeria using moderate levels of social-distancing strategy in the jurisdictions and in the entire nation. Although the use of face masks in public can significantly reduce COVID-19 in Nigeria, its use, as a sole intervention strategy, may fail to lead to a substantial reduction in disease burden. Such substantial reduction is feasible in the jurisdictions (and the entire Nigerian nation) if the public face mask use strategy is complemented with a social-distancing strategy. The community lockdown measures implemented in Nigeria on March 30, 2020 need to be maintained for at least three to four months to lead to the effective containment of COVID-19 outbreaks in the country. Relaxing, or fully lifting, the lockdown measures sooner, in an effort to re-open the economy or the country, may trigger a deadly second wave of the pandemic.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Communicable Disease Control , Epidemiological Monitoring , Humans , Masks , Models, Theoretical , Nigeria/epidemiology , Pandemics , Physical Distancing , Quarantine , Treatment Outcome
20.
Glob Health Action ; 13(1): 1816044, 2020 12 31.
Article in English | MEDLINE | ID: mdl-33012269

ABSTRACT

COVID-19 has wreaked havoc globally with particular concerns for sub-Saharan Africa (SSA), where models suggest that the majority of the population will become infected. Conventional wisdom suggests that the continent will bear a higher burden of COVID-19 for the same reasons it suffers from other infectious diseases: ecology, socio-economic conditions, lack of water and sanitation infrastructure, and weak health systems. However, so far SSA has reported lower incidence and fatalities compared to the predictions of standard models and the experience of other regions of the world. There are three leading explanations, each with different implications for the final epidemic burden: (1) low case detection, (2) differences in epidemiology (e.g. low R 0 ), and (3) policy interventions. The low number of cases have led some SSA governments to relaxing these policy interventions. Will this result in a resurgence of cases? To understand how to interpret the lower-than-expected COVID-19 case data in Madagascar, we use a simple age-structured model to explore each of these explanations and predict the epidemic impact associated with them. We show that the incidence of COVID-19 cases as of July 2020 can be explained by any combination of the late introduction of first imported cases, early implementation of non-pharmaceutical interventions (NPIs), and low case detection rates. We then re-evaluate these findings in the context of the COVID-19 epidemic in Madagascar through August 2020. This analysis reinforces that Madagascar, along with other countries in SSA, remains at risk of a growing health crisis. If NPIs remain enforced, up to 50,000 lives may be saved. Even with NPIs, without vaccines and new therapies, COVID-19 could infect up to 30% of the population, making it the largest public health threat in Madagascar for the coming year, hence the importance of clinical trials and continually improving access to healthcare.


Subject(s)
Coronavirus Infections/epidemiology , Models, Theoretical , Pneumonia, Viral/epidemiology , Africa South of the Sahara/epidemiology , COVID-19 , Humans , Incidence , Madagascar/epidemiology , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL
...