Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 22(1): 280, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735680

ABSTRACT

BACKGROUND: Anopheles funestus, the main malaria vector, prefer to oviposit in permanent and/or semi-permanent breeding habitats located far from human dwellings. Difficulties in identifying and accessing these habitats jeopardize the feasibility of conventional larviciding. In this way, a semi-field study was conducted to assess the potential of autodissemination of pyriproxyfen (PPF) by An. funestus for its control. METHODS: The study was conducted inside a semi-field system (SFS). Therein, two identical separate chambers, the treatment chamber with a PPF-treated clay pot (0.25 g AI), and the control chamber with an untreated clay pot. In both chambers, one artificial breeding habitat made of a plastic basin with one litre of water was provided. Three hundred blood-fed female An. funestus aged 5-9 days were held inside untreated and treated clay pots for 30 min and 48 h before being released for oviposition. The impact of PPF on adult emergence, fecundity, and fertility through autodissemination and sterilization effects were assessed by comparing the treatment with its appropriate control group. RESULTS: Mean (95% CI) percentage of adult emergence was 15.5% (14.9-16.1%) and 70.3% (69-71%) in the PPF and control chamber for females exposed for 30 min (p < 0.001); and 19% (12-28%) and 95% (88-98%) in the PPF and control chamber for females exposed for 48 h (p < 0.001) respectively. Eggs laid by exposed mosquitoes and their hatch rate were significantly reduced compared to unexposed mosquitoes (p < 0.001). Approximately, 90% of females exposed for 48 h retained abnormal ovarian follicles and only 42% in females exposed for 30 min. CONCLUSION: The study demonstrated sterilization and adult emergence inhibition via autodissemination of PPF by An. funestus. Also, it offers proof that sterilized An. funestus can transfer PPF to prevent adult emergence at breeding habitats. These findings warrant further assessment of the autodissemination of PPF in controlling wild population of An. funestus, and highlights its potential for complementing long-lasting insecticidal nets.


Subject(s)
Anopheles , Malaria , Adult , Humans , Animals , Female , Clay , Mosquito Vectors
2.
Parasit Vectors ; 15(1): 213, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35710443

ABSTRACT

BACKGROUND: Agricultural pesticides may exert strong selection pressures on malaria vectors during the aquatic life stages and may contribute to resistance in adult mosquitoes. This could reduce the performance of key vector control interventions such as indoor-residual spraying and insecticide-treated nets. The aim of this study was to investigate effects of agrochemicals on susceptibility and fitness of the malaria vectors across farming areas in Tanzania. METHODS: An exploratory mixed-methods study was conducted to assess pesticide use in four villages (V1-V4) in south-eastern Tanzania. Anopheles gambiae (s.l.) larvae were collected from agricultural fields in the same villages and their emergent adults examined for insecticide susceptibility, egg-laying and wing lengths (as proxy for body size). These tests were repeated using two groups of laboratory-reared An. arabiensis, one of which was pre-exposed for 48 h to sub-lethal aquatic doses of agricultural pesticides found in the villages. RESULTS: Farmers lacked awareness about the linkages between the public health and agriculture sectors but were interested in being more informed. Agrochemical usage was reported as extensive in V1, V2 and V3 but minimal in V4. Similarly, mosquitoes from V1 to V3 but not V4 were resistant to pyrethroids and either pirimiphos-methyl or bendiocarb, or both. Adding the synergist piperonyl butoxide restored potency of the pyrethroids. Pre-exposure of laboratory-reared mosquitoes to pesticides during aquatic stages did not affect insecticide susceptibility in emergent adults of the same filial generation. There was also no effect on fecundity, except after pre-exposure to organophosphates, which were associated with fewer eggs and smaller mosquitoes. Wild mosquitoes were smaller than laboratory-reared ones, but fecundity was similar. CONCLUSIONS: Safeguarding the potential of insecticide-based interventions requires improved understanding of how agricultural pesticides influence important life cycle processes and transmission potential of mosquito vectors. In this study, susceptibility of mosquitoes to public health insecticides was lower in villages reporting frequent use of pesticides compared to villages with little or no pesticide use. Variations in the fitness parameters, fecundity and wing length marginally reflected the differences in exposure to agrochemicals and should be investigated further. Pesticide use may exert additional life cycle constraints on mosquito vectors, but this likely occurs after multi-generational exposures.


Subject(s)
Anopheles , Insecticides , Malaria , Pesticides , Pyrethrins , Agriculture , Animals , Insecticide Resistance , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors , Pesticides/pharmacology , Pyrethrins/pharmacology , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...