Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Res Int ; 2024: 4264229, 2024.
Article in English | MEDLINE | ID: mdl-39286282

ABSTRACT

This study investigated the ability of lactic acid bacteria (LAB) isolated from oranges to use fish by-products (FB) and chicken by-products (CB) as nitrogen sources alternative to yeast extract for lactic acid (LA) production in a papaya by-product medium as a carbon source. Once the fermentation agents had been isolated, they were subjected to biochemical and molecular characterization. Inexpensive nitrogen sources, precisely CB and FB, were prepared, freeze-dried, and yield evaluated. Also, before to the fermentation experiments, the Total Kjehdahl Nitrogen (TKN) of these by-products and that of the yeast extract were determined. Then, three production media differing in terms of nitrogen source were formulated from these nitrogen sources. From the 22 LAB isolated from orange, two isolates of interest (NGO25 and NGO23) were obtained; all belonging to the Lactiplantibacillus plantarum species based on 16S rRNA gene sequencing. Furthermore, the production yield powder obtained after lyophilization of 1 L of CB and FB surpernatant were, respectively, 16.6 g and 12.933 g. The TKN of different nitrogen sources powder were 71.4 ± 0.000% DM (FB), 86.145 ± 0.001% DM (CB), and 87.5 ± 0.99% DM (yeast extract). The best kinetic parameters of LA production (LA (g/L): 31.945 ± 0.078; volumetric productivity (g/L.h): 1.331 ± 0.003; LA yield (mg/g) 63.89 ± 0.156; biomass (g/L) 7.925 ± 0.035; cell growth rate (g/L.h): 0.330 ± 0.001) were recorded by Lactiplantibacillus plantarum NGO25 after 24 h of fermentation. The latter data were obtained in the production medium containing CB as nitrogen sources. In addition, this production medium cost only $0.152 to formulate, compared to yeast extract which required $1.692 to formulate. Thus, freeze-dried CB can be used as an alternative to yeast extract in large-scale production of LA.


Subject(s)
Carbon , Fermentation , Lactic Acid , Nitrogen , Nitrogen/metabolism , Lactic Acid/metabolism , Carbon/metabolism , Lactobacillales/metabolism , Animals , RNA, Ribosomal, 16S/genetics , Citrus/microbiology , Chickens/microbiology , Culture Media
2.
Biomed Res Int ; 2022: 8437926, 2022.
Article in English | MEDLINE | ID: mdl-36457342

ABSTRACT

The aim of this work was the screening of bacteriocin-producing LABs isolated from fish, the selection of promising/prominent strain(s), the characterization of the bacteriocin produced, and the evaluation of its potential to be used as biopreservative(s). Amplification and sequencing of the 16S rRNA gene of the bacteriocin-producing strain was performed. Then a partial purification of the produced bacteriocin, using a combination of ammonium sulfate and chloroform-methanol precipitation, was done. Its molecular weight was determined by SDS-PAGE. In addition, the action spectrum, the hemolysis test, and its ability to inhibit biofilm formation were analyzed. A total of 88 isolates of lactic acid bacteria (LAB) including one bacteriocin producer, which was identified as Lactococcus lactis F01, were collected. The bacteriocin was partially purified with an estimated yield of 40%. Regarding the SDS-PAGE profile, the secreted bacteriocin has molecular weight of about 3.5 kDa and was identified as class I bacteriocin. The antimicrobial test showed that the bacteriocin inhibits pathogenic and/or spoilage bacteria, 10 Gram-positive and 16 Gram-negative bacterial species. Moreover, it can inhibit biofilm formation from 1.3% (Escherichia coli) to 63.92% (Pseudomonas aeruginosa ATCC15692) depending on the strain. The hemolytic activity of novel bacteriocin was observed at the concentration of 10 µg/ml of bacteriocin crude extract, which was 0.7 ± 0.0029%. In addition, it exhibited good thermal and pH stability with retained antibacterial activity of 85.25% after treatment at 121°C for 20 min, as well as at a pH range between 2.0 and 10.0. Moreover, this bacteriocin showed the ability to inhibit the growth of bacterial culture load in fish sausage stored at 8°C for 28 days. Considering the results obtained, bacteriocin could be potentially exploited as an alternative to chemical preservatives or as a substitute for antibiotics.


Subject(s)
Bacteriocins , Carps , Food Preservation , Lactococcus lactis , Meat Products , Animals , Anti-Bacterial Agents/pharmacology , Bacteriocins/pharmacology , Biofilms , Carps/microbiology , Escherichia coli , RNA, Ribosomal, 16S/genetics , Meat Products/microbiology
3.
Heliyon ; 8(10): e10850, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36247120

ABSTRACT

The current trend in starter selection is to combine both technological and probiotic properties to standardise and make functional artisanal fermented beverages such as Sha'a whose properties are very variable due to the lack of a known starter. The objective of this work was to study technological and probiotic properties of yeasts isolated from Sha'a sold in Bamenda, Bafoussam, Bonabérie, Dschang, Foumbot, Mbouda and Njombé (Cameroon). The isolated yeasts were studied for their ability to produce CO2 from glucose, to grow in the presence of 8% ethanol, 20% glucose and pH 3, to assimilate maltose and to produce ethanol. Then, the survival of the pre-selected isolates was assessed in simulated gastric (pH 2 and 3) and intestinal juices, followed by self-aggregation, co-aggregation, hydrophobicity, haemolysin, gelatinase, biogenic amine production, antibiotic and antifungal susceptibility, bile salt hydrolase and antiradical activity. The selected isolates were identified by sequencing the 5.8S/28S rRNA gene. From the 98 isolates obtained, 66 produced CO2 from glucose and 16 were then selected for their ability to grow in the presence of 8% ethanol, 20% glucose, pH 3 and maltose. The overall survival of isolates ranged from 4.12 ± 1.63 to 104.25 ± 0.19% (LT16) and from 0.56 ± 0.20 to 96.74 ± 1.60% (LT66) at pH 3 and pH 2 respectively. All of them have remarkable surface hydrophobicity properties. Based on principal component analysis, 5 isolates were selected as the best. However, only 3 of them, LT16 (the most promising), LT25 identified as Saccharomyces cerevisiae and LT80 as Nakaseomyces delphensis, do not produce a virulence factor. The latter can deconjugate bile salts with a maximum percentage of 60.54 ± 0.12% (LT16) and the highest inhibition of DPPH° radicals was 55.94 ± 1.14% (LT25). In summary, the yeast flora of Sha'a contains yeasts capable of fermenting and producing ethanol while producing bioactive compounds that would benefit the consumer.

SELECTION OF CITATIONS
SEARCH DETAIL