Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 937: 173405, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38796020

ABSTRACT

A hydrological and hydrochemical database (produced by the M-TROPICS critical zone observatory) in the upper Nyong Basin from 1998 to 2017 was used to evaluate the river's response to climatic and anthropogenic forcing and examine chemical weathering processes. SiO2 and HCO3- constitute about 85 % of the Total dissolved solids (TDS) load, equivalent to 0.12 × 109 kg. y-1. Electrical conductivity (EC), Total dissolved solids (TDS), major cations, major anions (except F- and NO3-) and alkalinity (Alk) vary seasonally and follow a predictable model with discharge. Atlantic Meridional Mode oscillation controls the long-term water chemistry. Atmospheric input and silicate weathering are the main factors influencing the Nyong rivers chemistry. However, several indices supported the progressive water quality deterioration by human activities, namely: the excess of Cl- and SO42- after the substraction of atmospheric inputs, the basic pH observed for specific samples, long-term increase in the values of pH, EC, TDS, EC, Mg2+, Ca2+, F-, NO3-, HCO3-, Alk, SiO2 and Dissolved Organic Carbon. Runoff and physical erosion have an important control on chemical erosion in the upper Nyong Basin rivers. The chemical erosion rate (3.3 t.km-2.y-1) equals the silicate weathering rate. The CO2 consumption rate, in the Nyong rivers, is lower than the global average (98× 103 for silicate weathering and 246 × 103 mol.km-2.y-1 for chemical erosion) and estimated at 52.3 × 103 for silicate weathering and 54.1 × 103 mol.km-2.y-1 for chemical erosion. At Olama, the most downstream location of the monitoring setup, the Nyong River Basin consumed 1 × 109 mol.y-1 of CO2 by chemical erosion.

2.
ScientificWorldJournal ; 2019: 3814962, 2019.
Article in English | MEDLINE | ID: mdl-30692873

ABSTRACT

During the night of November 18 to 19, 2016, many stormy cells are not very mobile organized on the east of the southern plateau of Cameroon and dumped up to 260 mm of rain in 4 hours. Occurring on a relatively saturated soil, these rains caused strong floods of Kadey and Doumé. The floods were particularly damaging in the city of Batouri, where a subdivision was submerged by the Boumbé (tributary of the Sangha) with water heights in the houses reaching 1.75 m, despite the presence of a dam allowing clipping floods upstream of the basin. In this article, we present the results of the analysis of the postevent survey generated on this event with flow rates estimated on 15 sections of ungauged subbasins. These flows are then compared with those obtained from other recent postevent survey and those estimated by various regional estimations. The inventory of heavy rains around Batouri during the period 1970-2016 has led to the revision of current development standards in the region, which seem to underestimate rainfall and infrequent flows.

3.
Environ Sci Pollut Res Int ; 25(18): 17690-17715, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29671229

ABSTRACT

Urban agriculture is crucial to local populations, but the risk of it contaminating water has rarely been documented. The aim of this study was to assess pesticide contamination of surface waters from the Méfou watershed (Yaoundé, Cameroon) by 32 selected herbicides, fungicides, and insecticides (mainly polar) according to their local application, using both grab sampling and polar organic compounds integrative samplers (POCIS). Three sampling campaigns were conducted in the March/April and October/November 2015 and June/July 2016 rainy seasons in urban and peri-urban areas. The majority of the targeted compounds were detected. The quantification frequencies of eight pesticides were more than 20% with both POCIS and grab sampling, and that of diuron and atrazine reached 100%. Spatial differences in contamination were evidenced with higher contamination in urban than peri-urban rivers. In particular, diuron was identified as an urban contaminant of concern because its concentrations frequently exceeded the European water quality guideline of 0.200 µg/L in freshwater and may thus represent an ecological risk due to a risk quotient > 1 for algae observed in 94% of grab samples. This study raises concerns about the impacts of urban agriculture on the quality of water resources and to a larger extent on the health of the inhabitants of cities in developing countries. Graphical abstract ᅟ.


Subject(s)
Atrazine/analysis , Diuron/analysis , Fungicides, Industrial/analysis , Herbicides/analysis , Insecticides/analysis , Pesticides/analysis , Agriculture , Atrazine/chemistry , Cameroon , Cities , Diuron/chemistry , Fresh Water , Fungicides, Industrial/chemistry , Herbicides/chemistry , Insecticides/chemistry , Organic Chemicals , Pesticides/chemistry , Rain , Rivers , Water Pollution , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...