Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 11(7)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37505585

ABSTRACT

Copper smelting has been a source of soil contamination with trace metals in Penga Penga (Lubumbashi). The residents are exposed to trace metal ingestion, and planting trees is challenging in such soil conditions. Nevertheless, planting trees in former household dumps or using various types of amendments has allowed the provisioning of fruits in a few residences. From the perspective of scaling up the process, a survey has been conducted with the aim of assessing the effectiveness of the planting processes on the trace metal content in fruits and leaves of Mangifera indica L. and Syzygium guineense (Willd) DC. Samples were collected from residential households in Penga Penga and Kalebuka (a non-polluted suburb). The bioconcentration factor (BCF) and the safe weekly consumption (SWC) were calculated for each species. The results showed higher values of total and soluble concentrations of Cu, Pb, and Zn in the rhizosphere of the two species in Penga Penga. Metal concentrations were higher in the fruits and leaves from Penga Penga, with 47% of samples above the FAO and WHO thresholds (vs. 18.5% in Kalebuka). The BCF values were below 1, demonstrating the effectiveness of the process in reducing the translocation of metals to leaves and fruits. Recommendations from the SWC limit Pb consumption to 9 kg for mango flesh and Cd consumption to 6.6 kg for S. guineense fruits in Penga Penga (vs. 78 kg and 68 kg in Kalebuka). Finally, the results of this study provide interesting lessons for the scaling up and technical itinerary of planting trees in Penga Penga.

2.
Environ Sci Pollut Res Int ; 23(14): 13693-705, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26446734

ABSTRACT

Phytostabilisation (i.e. using plants to immobilise contaminants) represents a well-known technology to hamper heavy metal spread across landscapes. Southeastern D.R. Congo, Microchloa altera, a tolerant grass from the copper hills, was recently identified as a candidate species to stabilise copper in the soil. More than 50 grasses compose this flora, which may be studied to implement phytostabilisation strategies. However, little is known about their phenology, tolerance, reproductive strategy or demography. The present study aims to characterize the Poaceae that may be used in phytostabilisation purposes based on the following criteria: their ecological distribution, seed production at two times, abundance, soil coverage and the germination percentage of their seeds. We selected seven perennial Poaceae that occur on the copper hills. Their ecological distributions (i.e. species response curves) have been modelled along copper or cobalt gradients with generalised additive models using logic link based on 172 presence-absence samples on three sites. For other variables, a total of 69 quadrats (1 m(2)) were randomly placed across three sites and habitats. For each species, we compared the number of inflorescence-bearing stems (IBS) by plot, the percentage of cover, the number of seeds by IBS and the estimated number of seeds by plot between sites and habitat. Three species (Andropogon schirensis, Eragrostis racemosa and Loudetia simplex) were very interesting for phytostabilisation programs. They produced a large quantity of seeds and had the highest percentage of cover. However, A. schirensis and L. simplex presented significant variations in the number of seeds and the percentage of cover according to site.


Subject(s)
Copper/metabolism , Environmental Restoration and Remediation/methods , Poaceae/growth & development , Soil Pollutants/metabolism , Biodegradation, Environmental , Democratic Republic of the Congo , Models, Biological , Poaceae/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...