Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 15(27): e1901457, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31120199

ABSTRACT

Despite extensive research, large-scale realization of metal-oxide electronics is still impeded by high-temperature fabrication, incompatible with flexible substrates. Ideally, an athermal treatment modifying the electronic structure of amorphous metal oxide semiconductors (AMOS) to generate sufficient carrier concentration would help mitigate such high-temperature requirements, enabling realization of high-performance electronics on flexible substrates. Here, a novel field-driven athermal activation of AMOS channels is demonstrated via an electrolyte-gating approach. Facilitating migration of charged oxygen species across the semiconductor-dielectric interface, this approach modulates the local electronic structure of the channel, generating sufficient carriers for charge transport and activating oxygen-compensated thin films. The thin-film transistors (TFTs) investigated here depict an enhancement of linear mobility from 51 to 105.25 cm2 V-1 s-1 (ionic-gated) and from 8.09 to 14.49 cm2 V-1 s-1 (back-gated), by creating additional oxygen vacancies. The accompanying stochiometric transformations, monitored via spectroscopic measurements (X-ray photoelectron spectroscopy) corroborate the detailed electrical (TFT, current evolution) parameter analyses, providing critical insights into the underlying oxygen-vacancy generation mechanism and clearly demonstrating field-induced activation as a promising alternative to conventional high-temperature annealing strategies. Facilitating on-demand active programing of the operation modes of transistors (enhancement vs depletion), this technique paves way for facile fabrication of logic circuits and neuromorphic transistors for bioinspired computing.

2.
ACS Nano ; 12(11): 11263-11273, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30395439

ABSTRACT

Inspired by neural computing, the pursuit of ultralow power neuromorphic architectures with highly distributed memory and parallel processing capability has recently gained more traction. However, emulation of biological signal processing via artificial neuromorphic architectures does not exploit the immense interplay between local activities and global neuromodulations observed in biological neural networks and hence are unable to mimic complex biologically plausible adaptive functions like heterosynaptic plasticity and homeostasis. Here, we demonstrate emulation of complex neuronal behaviors like heterosynaptic plasticity, homeostasis, association, correlation, and coincidence in a single neuristor via a dual-gated architecture. This multiple gating approach allows one gate to capture the effect of local activity correlations and the second gate to represent global neuromodulations, allowing additional modulations which augment their plasticity, enabling higher order temporal correlations at a unitary level. Moreover, the dual-gate operation extends the available dynamic range of synaptic conductance while maintaining symmetry in the weight-update operation, expanding the number of accessible memory states. Finally, operating neuristors in the subthreshold regime enable synaptic weight changes with high gain while maintaining ultralow power consumption of the order of femto-Joules.

3.
ACS Appl Mater Interfaces ; 10(36): 30506-30513, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30129368

ABSTRACT

Thin-film transistors (TFTs) with high electrical performances (mobility > 10 cm2/V s, Vth < 1 V, SS < 1 V/decade, on/off ratio ≈ 106) obtained from the silicon- and oxide-based single-crystalline semiconductor materials require high processing temperature and hence are not suitable for flexible electronics. Amorphous oxide-based transparent electronic devices are attractive to meet emerging technological demands where crystalline oxide-/silicon-based architectures cannot provide a solution. Here, we tackle this problem by using a novel amorphous oxide semiconducting material-namely, indium tungsten oxide (IWO)-as the active channel in flexible TFTs (FTFTs). Post-annealing temperature as low as 270 °C for amorphous IWO thin films deposited by radio frequency sputtering at room temperature could result in smooth morphology ( Rrms ≈ 0.42 nm), good adhesion, and high carrier density ( n ≈ 7.19 × 1018 cm-3). Excellent TFT characteristics of flexible devices could be achieved with linear field effect mobility µFE ≈ 25.86 cm2/V s, subthreshold swing SS ≈ 0.30 V/decade, threshold voltage Vth ≈ -1.5 V, and on/off ratio Ion/ Ioff ≈ 5.6 × 105 at 3 V and stable operation during bending of the FTFT. Additionally, IWO TFTs were implemented as synapses, the building block for neuromorphic computing. Paired-pulse facilitation up to 138% was observed and showed an exponential decay resembling chemical synapses. Utilizing this characteristic, a high-pass dynamic temporal filter was devised providing increased gain from 1.55 to 21 when frequency was raised from 22 to 62 Hz. The high performance and stability of flexible TFTs obtained with IWO films demonstrate their promise for low-voltage electronic applications.

4.
ACS Appl Mater Interfaces ; 9(17): 15015-15021, 2017 May 03.
Article in English | MEDLINE | ID: mdl-28422483

ABSTRACT

Electronic skins need to be versatile and able to detect multiple inputs beyond simple pressure and touch while having attributes of transparency and facile manufacturability. Herein, we demonstrate a versatile nanostructured transparent sensor capable of detecting wide range of pressures and proximity as well as novel nonoptical detection of printed patterns. The architecture and fabrication processes are straightforward and show robustness to repeated cycling and testing. The sensor displays good sensitivity and stability from 30 Pa to 5 kPa without the use of microstructuration and is conformal and sensitive to be utilized as a wrist-based heart-rate monitor. Highly sensitive proximity detection is shown from a distance of 9 cm. Finally, a unique nonoptical pattern recognition dependent on the difference in the dielectric constant between ink and paper is also demonstrated, indicating the multifunctionality of this simple architecture.

5.
ACS Appl Mater Interfaces ; 8(2): 1139-46, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26695104

ABSTRACT

Amorphous oxide semiconductors such as indium zinc tin oxide (IZTO) are considered favorites to serve as channel materials for thin film transistors (TFTs) because they combine high charge carrier mobility with high optical transmittance, allowing for the development of transparent electronics. Although the influence of relative cationic concentrations in determining the electronic properties have been studied in sputtered and PLD films, the development of printed transparent electronics hinges on such dependencies being explored for solution-processed systems. Here, we study solution-processed indium zinc tin oxide thin film transistors (TFTs) to investigate variation in their electrical properties with change in cationic composition. Charge transport mobility ranging from 0.3 to 20.3 cm(2)/(V s), subthreshold swing ranging from 1.2 to 8.4 V/dec, threshold voltage ranging from -50 to 5 V, and drain current on-off ratio ranging from 3 to 6 orders of magnitude were obtained by examining different compositions of the semiconductor films. Mobility was found to increase with the incorporation of large cations such as In(3+) and Sn(4+) due to the vast s-orbital overlap they can achieve when compared to the intercationic distance. Subthreshold swing decreased with an increase in Zn(2+) concentration due to reduced interfacial state formation between the semiconductor and dielectric. The optimized transistor obtained at a compositional ratio of In/Zn/Sn = 1:1:1, exhibited a high field-effect mobility of 8.62 cm(2)/(V s), subthreshold swing of 1.75 V/dec, and current on-off ratio of 10(6). Such impressive performances reaffirm the promise of amorphous metal oxide semiconductors for printed electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...