Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 114(4): 862-873, 2017 04.
Article in English | MEDLINE | ID: mdl-27800627

ABSTRACT

Gamma-aminobutyric acid (GABA) is a non-protein amino acid widespread in Nature. Among the various uses of GABA, its lactam form 2-pyrrolidone can be chemically converted to the biodegradable plastic polyamide-4. In metabolism, GABA can be synthesized either by decarboxylation of l-glutamate or by a pathway that starts with the transamination of putrescine. Fermentative production of GABA from glucose by recombinant Corynebacterium glutamicum has been described via both routes. Putrescine-based GABA production was characterized by accumulation of by-products such as N-acetyl-putrescine. Their formation was abolished by deletion of the spermi(di)ne N-acetyl-transferase gene snaA. To improve provision of l-glutamate as precursor 2-oxoglutarate dehydrogenase activity was reduced by changing the translational start codon of the chromosomal gene for 2-oxoglutarate dehydrogenase subunit E1o to the less preferred TTG and by maintaining the inhibitory protein OdhI in its inhibitory form by changing amino acid residue 15 from threonine to alanine. Putrescine-based GABA production by the strains described here led to GABA titers up to 63.2 g L-1 in fed-batch cultivation at maximum volumetric productivities up to 1.34 g L-1 h-1 , the highest volumetric productivity for fermentative GABA production reported to date. Moreover, GABA production from the carbon sources xylose, glucosamine, and N-acetyl-glucosamine that do not have competing uses in the food or feed industries was established. Biotechnol. Bioeng. 2017;114: 862-873. © 2016 Wiley Periodicals, Inc.


Subject(s)
Metabolic Engineering/methods , Putrescine/metabolism , Systems Biology/methods , gamma-Aminobutyric Acid/metabolism , Amino Sugars , Batch Cell Culture Techniques , Biomass , Corynebacterium glutamicum/metabolism , Fermentation , Glucose/metabolism , Xylose/metabolism
2.
Metabolites ; 5(2): 211-31, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25919117

ABSTRACT

Corynebacterium glutamicum shows great potential for the production of the glutamate-derived diamine putrescine, a monomeric compound of polyamides. A genome-scale stoichiometric model of a C. glutamicum strain with reduced ornithine transcarbamoylase activity, derepressed arginine biosynthesis, and an anabolic plasmid-addiction system for heterologous expression of E. coli ornithine decarboxylase gene speC was investigated by flux balance analysis with respect to its putrescine production potential. Based on these simulations, enhancing glycolysis and anaplerosis by plasmid-borne overexpression of the genes for glyceraldehyde 3-phosphate dehydrogenase and pyruvate carboxylase as well as reducing 2-oxoglutarate dehydrogenase activity were chosen as targets for metabolic engineering. Changing the translational start codon of the chromosomal gene for 2-oxoglutarate dehydrogenase subunit E1o to the less preferred TTG and changing threonine 15 of OdhI to alanine reduced 2-oxoglutarate dehydrogenase activity about five fold and improved putrescine titers by 28%. Additional engineering steps improved further putrescine production with the largest contributions from preventing the formation of the by-product N-acetylputrescine by deletion of spermi(di)ne N-acetyltransferase gene snaA and from overexpression of the gene for a feedback-resistant N-acetylglutamate kinase variant. The resulting C. glutamicum strain NA6 obtained by systems metabolic engineering accumulated two fold more putrescine than the base strain, i.e., 58.1 ± 0.2 mM, and showed a specific productivity of 0.045 g·g-1·h-1 and a yield on glucose of 0.26 g·g-1.

3.
J Biotechnol ; 201: 75-85, 2015 May 10.
Article in English | MEDLINE | ID: mdl-25449016

ABSTRACT

Corynebacterium glutamicum has been engineered for production of the polyamide monomer putrescine or 1,4-diaminobutane. Here, N-acetylputrescine was shown to be a significant by-product of putrescine production by recombinant putrescine producing C. glutamicum strains. A systematic gene deletion approach of 18 (putative) N-acetyltransferase genes revealed that the cg1722 gene product was responsible for putrescine acetylation. The encoded enzyme was purified and characterized as polyamine N-acetyltransferase. The enzyme accepted acetyl-CoA and propionyl-CoA as donors for acetylation of putrescine and other diamines as acceptors, but showed highest catalytic efficiency with the triamine spermidine and the tetraamine spermine and, hence, was named SnaA. Upon deletion of snaA in the putrescine producing strain PUT21, no acteylputrescine accumulated, but about 41% more putrescine as compared to the parent strain. Moreover, a transcriptome approach identified increased expression of the cgmAR operon encoding a putative permease and a transcriptional TetR-family repressor upon induction of putrescine production in C. glutamicum PUT21. CgmR is known to bind to cgmO upstream of cgmAR and gel mobility shift experiments with purified CgmR revealed that putrescine and other diamines perturbed CgmR-cgmO complex formation, but not migration of free cgmO DNA. Deletion of the repressor gene cgmR resulted in expression changes of a number of genes and increased putrescine production of C. glutamicum PUT21 by 19% as compared to the parent strain. Overexpression of the putative transport gene cgmA increased putrescine production by 24% as compared to the control strain. However, cgmA overexpression in PUT21ΔsnaA did not further improve putrescine production, hence, the beneficial effects of both targets were not synergistic at the highest described yield of 0.21 g g(-1).


Subject(s)
Corynebacterium glutamicum/metabolism , Metabolic Engineering/methods , Putrescine/metabolism , Acetylation , Gene Expression Profiling , Putrescine/analysis , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...