Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(748): eadj4504, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776389

ABSTRACT

Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.


Subject(s)
Antiviral Agents , Prodrugs , SARS-CoV-2 , Animals , SARS-CoV-2/drug effects , Prodrugs/pharmacology , Prodrugs/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Mice , Administration, Oral , Chlorocebus aethiops , Vero Cells , COVID-19 Drug Treatment , COVID-19/virology , Virus Replication/drug effects , Nucleosides/pharmacology , Nucleosides/therapeutic use , Nucleosides/chemistry , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , Disease Models, Animal
2.
Science ; 383(6688): eadk6176, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38484056

ABSTRACT

Obeldesivir (ODV, GS-5245) is an orally administered prodrug of the parent nucleoside of remdesivir (RDV) and is presently in phase 3 trials for COVID-19 treatment. In this work, we show that ODV and its circulating parent nucleoside metabolite, GS-441524, have similar in vitro antiviral activity against filoviruses, including Marburg virus, Ebola virus, and Sudan virus (SUDV). We also report that once-daily oral ODV treatment of cynomolgus monkeys for 10 days beginning 24 hours after SUDV exposure confers 100% protection against lethal infection. Transcriptomics data show that ODV treatment delayed the onset of inflammation and correlated with antigen presentation and lymphocyte activation. Our results offer promise for the further development of ODV to control outbreaks of filovirus disease more rapidly.


Subject(s)
Alanine , Antiviral Agents , Ebolavirus , Hemorrhagic Fever, Ebola , Nucleosides , Prodrugs , Animals , Administration, Oral , Ebolavirus/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/prevention & control , Macaca fascicularis , Nucleosides/administration & dosage , Nucleosides/pharmacology , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/pharmacology , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/pharmacology , Prodrugs/administration & dosage , Prodrugs/pharmacology , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology
3.
J Med Chem ; 66(17): 11701-11717, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37596939

ABSTRACT

Remdesivir 1 is an phosphoramidate prodrug that releases the monophosphate of nucleoside GS-441524 (2) into lung cells, thereby forming the bioactive triphosphate 2-NTP. 2-NTP, an analog of ATP, inhibits the SARS-CoV-2 RNA-dependent RNA polymerase replication and transcription of viral RNA. Strong clinical results for 1 have prompted interest in oral approaches to generate 2-NTP. Here, we describe the discovery of a 5'-isobutyryl ester prodrug of 2 (GS-5245, Obeldesivir, 3) that has low cellular cytotoxicity and 3-7-fold improved oral delivery of 2 in monkeys. Prodrug 3 is cleaved presystemically to provide high systemic exposures of 2 that overcome its less efficient metabolism to 2-NTP, leading to strong SARS-CoV-2 antiviral efficacy in an African green monkey infection model. Exposure-based SARS-CoV-2 efficacy relationships resulted in an estimated clinical dose of 350-400 mg twice daily. Importantly, all SARS-CoV-2 variants remain susceptible to 2, which supports development of 3 as a promising COVID-19 treatment.


Subject(s)
COVID-19 , Prodrugs , Chlorocebus aethiops , Humans , Animals , SARS-CoV-2 , COVID-19 Drug Treatment , Nucleosides , Prodrugs/pharmacology , Prodrugs/therapeutic use , RNA, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Furans
4.
bioRxiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37425890

ABSTRACT

Despite the wide availability of several safe and effective vaccines that can prevent severe COVID-19 disease, the emergence of SARS-CoV-2 variants of concern (VOC) that can partially evade vaccine immunity remains a global health concern. In addition, the emergence of highly mutated and neutralization-resistant SARS-CoV-2 VOCs such as BA.1 and BA.5 that can partially or fully evade (1) many therapeutic monoclonal antibodies in clinical use underlines the need for additional effective treatment strategies. Here, we characterize the antiviral activity of GS-5245, Obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved RNA-dependent viral RNA polymerase (RdRp). Importantly, we show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-related Bat-CoV RsSHC014, Middle East Respiratory Syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant in vitro and highly effective as antiviral therapy in mouse models of SARS-CoV, SARS-CoV-2 (WA/1), MERS-CoV and Bat-CoV RsSHC014 pathogenesis. In all these models of divergent coronaviruses, we observed protection and/or significant reduction of disease metrics such as weight loss, lung viral replication, acute lung injury, and degradation in pulmonary function in GS-5245-treated mice compared to vehicle controls. Finally, we demonstrate that GS-5245 in combination with the main protease (Mpro) inhibitor nirmatrelvir had increased efficacy in vivo against SARS-CoV-2 compared to each single agent. Altogether, our data supports the continuing clinical evaluation of GS-5245 in humans infected with COVID-19, including as part of a combination antiviral therapy, especially in populations with the most urgent need for more efficacious and durable interventions.

5.
Dev Neurosci ; 27(1): 49-58, 2005.
Article in English | MEDLINE | ID: mdl-15886484

ABSTRACT

Krox-20, a C2H2-type zinc-finger transcription factor, plays an important role in rhombomere development. This study reveals that the Krox-20 null mutation impacts the development of mesencephalic trigeminal (Me5) neurons, a cell group traditionally thought to emerge from the mesencephalon. Based on cell counting studies, we show that Krox-20 null mutants have twice as many Me5 neurons relative to wildtypes at E15, but by birth have half the number of Me5 cells as wildtypes. TUNEL studies reveal a period of increased apoptosis from E17-P0 in mutants. The mutation does not result in differences in Me5 cell size, morphology, gene expression or peripheral projection patterns between genotypes, as demonstrated by retrograde tracing and Brn3a immunohistochemistry. The data suggest that Krox-20 regulates the period and extent of Me5 apoptosis, impacting the final number of Me5 neurons. The loss of Me5 in Krox-20-/- mice may highlight species-specific differences in the origin of these cells.


Subject(s)
DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental/genetics , Mesencephalon/abnormalities , Nervous System Malformations/metabolism , Transcription Factors/genetics , Trigeminal Nuclei/abnormalities , Animals , Apoptosis/genetics , Cell Count , Cell Shape/genetics , DNA-Binding Proteins/metabolism , Early Growth Response Protein 2 , Immunohistochemistry , Masseter Muscle/embryology , Masseter Muscle/innervation , Mesencephalon/metabolism , Mesencephalon/pathology , Mice , Mice, Knockout , Mutation/physiology , Nervous System Malformations/genetics , Nervous System Malformations/pathology , Neural Pathways/abnormalities , Neural Pathways/metabolism , Neural Pathways/pathology , Transcription Factor Brn-3 , Transcription Factor Brn-3A , Transcription Factors/metabolism , Trigeminal Nuclei/metabolism , Trigeminal Nuclei/pathology
6.
Ann Thorac Surg ; 79(3): e26-7, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15734370

ABSTRACT

We describe a patient who had a right lower lobe mass containing calcifications consistent with gallstones develop 3(1)/(2) years after laparoscopic cholecystectomy. Thoracotomy revealed a chronic abscess containing pigmented gallstones and an adjacent area of bronchoalveolar adenocarcinoma involving both N1 and N2 lymph nodes.


Subject(s)
Abscess/etiology , Calcinosis/etiology , Cholecystectomy, Laparoscopic/adverse effects , Lung Diseases/etiology , Abscess/complications , Adenocarcinoma/complications , Calcinosis/complications , Female , Humans , Lung Diseases/complications , Lung Neoplasms/complications , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...