Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 819: 146210, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35104577

ABSTRACT

'Sugars Will Eventually be Exported Transporters' (SWEETs) are a group of sugar transporters that play crucial roles in various biological processes, particularly plant stress responses. However, no information is available yet for the CaSWEET family in chickpea. Here, we identified all putative CaSWEET members in chickpea, and obtained their major characteristics, including physicochemical patterns, chromosomal distribution, subcellular localization, gene organization, conserved motifs and three-dimensional protein structures. Subsequently, we explored available transcriptome data to compare spatiotemporal transcript abundance of CaSWEET genes in various major organs. Finally, we studied the changes in their transcript levels in leaves and/or roots following dehydration and exogenous abscisic acid treatments using RT-qPCR to obtain valuable information underlying their potential roles in chickpea responses to water-stress conditions. Our results provide the first insights into the characteristics of the CaSWEET family members and a foundation for further functional characterizations of selected candidate genes for genetic engineering of chickpea.


Subject(s)
Biological Transport/genetics , Cicer/genetics , Cicer/metabolism , Gene Expression Profiling , Monosaccharide Transport Proteins/genetics , Plant Leaves/metabolism , Plant Roots/metabolism , Abscisic Acid/metabolism , Dehydration/genetics , Gene Expression Regulation, Plant , Monosaccharide Transport Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological
2.
Biology (Basel) ; 6(4)2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29194351

ABSTRACT

We previously reported that raloxifene, an estrogen receptor modulator, is also a ligand for the aryl hydrocarbon receptor (AhR). Raloxifene induces apoptosis in estrogen receptor-negative human cancer cells through the AhR. We performed structure-activity studies with seven raloxifene analogs to better understand the structural requirements of raloxifene for induction of AhR-mediated transcriptional activity and apoptosis. We identified Y134 as a raloxifene analog that activates AhR-mediated transcriptional activity and induces apoptosis in MDA-MB-231 human triple negative breast cancer cells. Suppression of AhR expression strongly reduced apoptosis induced by Y134, indicating the requirement of AhR for Y134-induced apoptosis. Y134 also induced apoptosis in hepatoma cells without having an effect on cell cycle regulation. Toxicity testing on zebrafish embryos revealed that Y134 has a significantly better safety profile than raloxifene. Our studies also identified an analog of raloxifene that acts as a partial antagonist of the AhR, and is capable of inhibiting AhR agonist-induced transcriptional activity. We conclude that Y134 is a promising raloxifene analog for further optimization as an anti-cancer agent targeting the AhR.

3.
J Agric Food Chem ; 65(19): 3891-3899, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28447451

ABSTRACT

Sesquiterpenes are common constituents of essential oil in plants. Their oxygenated derivatives often possess desirable flavor, fragrance, and pharmaceutical properties. Recently, the CYP264B1-based recombinant Escherichia coli whole-cell system has been constructed for the oxidation of sesquiterpenes. However, limiting factors of this system related to the high volatility of substrates and the suitability of the P450 redox partner need to be addressed. In this work, the improvement of the system was implemented with (+)-α-longipinene as a model substrate. By using 2-hydroxypropyl-ß-cyclodextrin and an alternative ferredoxin reductase, the conversion of (+)-α-longipinene was improved 77.1%. Applying the optimized conditions, the yields of the main products were 54.2, 34.2, and 47.2 mg L-1, corresponding to efficiencies of 82.1, 51.8, and 71.5% for the conversion of (+)-α-longipinene, (-)-isolongifolene, and α-humulene, respectively, at a 200 mL scale. These products were characterized as 12-hydroxy-α-longipinene, isolongifolene-9-one, and 5-hydroxy-α-humulene, respectively, by nuclear magnetic resonance spectroscopy.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Escherichia coli/metabolism , Sesquiterpenes/metabolism , Cytochrome P-450 Enzyme System/genetics , Escherichia coli/genetics , Molecular Structure , Oxidation-Reduction , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sesquiterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...