Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Urol ; 210(6): 886-887, 2023 12.
Article in English | MEDLINE | ID: mdl-37782915
2.
Int J Mol Sci ; 21(21)2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33147843

ABSTRACT

Space exploration poses multiple challenges for mankind, not only on a technical level but also to the entire physiology of the space traveller. The human system must adapt to several environmental stressors, microgravity being one of them. Lysosomes are ubiquitous to every cell and essential for their homeostasis, playing significant roles in the regulation of autophagy, immunity, and adaptation of the organism to changes in their environment, to name a few. Dysfunction of the lysosomal system leads to age-related diseases, for example bone loss, reduced immune response or cancer. As these conditions have been shown to be accelerated following exposure to microgravity, this review elucidates the lysosomal response to real and simulated microgravity. Microgravity activates the endo-lysosomal system, with resulting impacts on bone loss, muscle atrophy and stem cell differentiation. The investigation of lysosomal adaptation to microgravity can be beneficial in the search for new biomarkers or therapeutic approaches to several disease pathologies on earth as well as the potential to mitigate pathophysiology during spaceflight.


Subject(s)
Endosomes/physiology , Lysosomes/physiology , Weightlessness Simulation , Weightlessness , Animals , Autophagy , Biomarkers/metabolism , Cell Differentiation , Homeostasis , Humans , Immune System , Oxygen/metabolism , Signal Transduction , Space Flight
3.
Behav Processes ; 178: 104185, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32603677

ABSTRACT

Female mammals often demonstrate a rapid initiation of maternal responsiveness immediately after giving birth, as a result of neuroendocrine changes that occur during pregnancy and parturition. However, fathers and virgins of some species may display infant care similar to that performed by mothers but without experiencing these physiological events. In biparental species, in which both mothers and fathers care for their offspring, both sex and age may affect parental motivation, even in adult virgins. We examined the effects of sex and age on parental motivation in the California mouse, a monogamous, biparental rodent. We compared parental motivation of male and female virgins in both mid- and old adulthood using two new tests - a T-maze test and a rain test - as well as in standard parental-behavior tests. Adult virgin males were more parentally motivated than adult virgin females in both the T-maze test and the parental-behavior test, but parental motivation did not differ markedly between middle-aged and older adults of either sex. These findings suggest that sex differences in parental motivation in adult virgins are similar to those observed in other biparental rodents, and indicate that the T-maze test may be useful for evaluating parental motivation in this species.


Subject(s)
Motivation , Paternal Behavior , Aging , Animals , Behavior, Animal , Female , Male , Mice , Peromyscus , Pregnancy
4.
Horm Behav ; 114: 104536, 2019 08.
Article in English | MEDLINE | ID: mdl-31153926

ABSTRACT

Motherhood is energetically costly for mammals and is associated with pronounced changes in mothers' physiology, morphology and behavior. In ~5% of mammals, fathers assist their mates with rearing offspring and can enhance offspring survival and development. Although these beneficial consequences of paternal care can be mediated by direct effects on offspring, they might also be mediated indirectly, through beneficial effects on mothers. We tested the hypothesis that fathers in the monogamous, biparental California mouse (Peromyscus californicus) reduce the burden of parental care on their mates, and therefore, that females rearing offspring with and without assistance from their mates will show differences in endocrinology, morphology and behavior, as well as in the survival and development of their pups. We found that pups' survival and development in the lab did not differ between those raised by a single mother and those reared by both mother and father. Single mothers spent more time in feeding behaviors than paired mothers. Both single and paired mothers had higher lean mass and/or lower fat mass and showed more anxiety-like behavior in open-field tests and tail-suspension tests, compared to non-breeding females. Single mothers had higher body-mass-corrected liver and heart masses, but lower ovarian and uterine masses, than paired mothers and/or non-breeding females. Mass of the gastrointestinal tract did not differ between single and paired mothers, but single mothers had heavier gastrointestinal tract compared to non-breeding females. Single motherhood also induced a flattened diel corticosterone rhythm and a blunted corticosterone response to stress, compared to non-breeding conditions. These findings suggest that the absence of a mate induces morphological and endocrine changes in mothers, which might result from increased energetic demands of pup care and could potentially help maintain normal survival and development of pups.


Subject(s)
Maternal Behavior/physiology , Mothers , Peromyscus/physiology , Animals , Behavior, Animal/physiology , Corticosterone/metabolism , Fathers , Female , Male , Pair Bond , Paternal Behavior/physiology , Reproduction/physiology
5.
Nat Commun ; 8: 14584, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28350383

ABSTRACT

The endocrine system dynamically controls tissue differentiation and homeostasis, but has not been studied using dynamic tissue culture paradigms. Here we show that a microfluidic system supports murine ovarian follicles to produce the human 28-day menstrual cycle hormone profile, which controls human female reproductive tract and peripheral tissue dynamics in single, dual and multiple unit microfluidic platforms (Solo-MFP, Duet-MFP and Quintet-MPF, respectively). These systems simulate the in vivo female reproductive tract and the endocrine loops between organ modules for the ovary, fallopian tube, uterus, cervix and liver, with a sustained circulating flow between all tissues. The reproductive tract tissues and peripheral organs integrated into a microfluidic platform, termed EVATAR, represents a powerful new in vitro tool that allows organ-organ integration of hormonal signalling as a phenocopy of menstrual cycle and pregnancy-like endocrine loops and has great potential to be used in drug discovery and toxicology studies.


Subject(s)
Menstrual Cycle , Microfluidic Analytical Techniques/instrumentation , Ovary/metabolism , Tissue Culture Techniques/instrumentation , Animals , Female , Humans , Mesothelin , Mice , Pregnancy
6.
Reproduction ; 150(3): 183-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26116002

ABSTRACT

Encapsulated in vitro follicle growth (eIVFG) has great potential to provide an additional fertility preservation option for young women and girls with cancer or other reproductive health threatening diseases. Currently, follicles are cultured for a defined period of time and analyzed as a cohort. However, follicle growth is not synchronous, and culturing follicles for insufficient or excessive times can result in compromised gamete quality. Our objective is to determine whether the selection of follicles based on size, rather than absolute culture time, better predict follicle maturity and oocyte quality. Multilayer secondary mouse follicles were isolated and encapsulated in 0.25% alginate. Follicles were cultured individually either for defined time periods or up to specific follicle diameter ranges, at which point several reproductive endpoints were analyzed. The metaphase II (MII) percentage after oocyte maturation on day 6 was the highest (85%) when follicles were cultured for specific days. However, if follicles were cultured to a terminal diameter of 300-350 µm irrespective of absolute time in culture, 93% of the oocytes reached MII. More than 90% of MII oocytes matured from follicles with diameters of 300-350 µm showed normal spindle morphology and chromosome alignment, 85% of oocytes showed two pronuclei after IVF, 81% developed into the two-cell embryo stage and 38% developed to the blastocyst stage, all significantly higher than the percentages in the other follicle size groups. Our study demonstrates that size-specific follicle selection can be used as a non-invasive marker to identify high-quality oocytes and improve reproductive outcomes during eIVFG.


Subject(s)
Blastocyst/physiology , Cell Size , Fertilization in Vitro , In Vitro Oocyte Maturation Techniques , Oocyte Retrieval , Oocytes/physiology , Ovarian Follicle/physiology , Animals , Cells, Cultured , Chromatin Assembly and Disassembly , Embryo Culture Techniques , Female , Meiosis , Metaphase , Mice , Time Factors
7.
Dev Biol ; 353(1): 19-28, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21338598

ABSTRACT

The specification of an appropriate number of cardiomyocytes from the lateral plate mesoderm requires a careful balance of both positive and negative regulatory signals. To identify new regulators of cardiac specification, we performed a phenotype-driven ENU mutagenesis forward genetic screen in zebrafish. In our genetic screen we identified a zebrafish ctr9 mutant with a dramatic reduction in myocardial cell number as well as later defects in primitive heart tube elongation and atrioventricular boundary patterning. Ctr9, together with Paf1, Cdc73, Rtf1 and Leo1, constitute the RNA polymerase II associated protein complex, PAF1. We demonstrate that the PAF1 complex (PAF1C) is structurally conserved among zebrafish and other metazoans and that loss of any one of the components of the PAF1C results in abnormal development of the atrioventricular boundary of the heart. However, Ctr9, Cdc73, Paf1 and Rtf1, but not Leo1, are required for the specification of an appropriate number of cardiomyocytes and elongation of the heart tube. Interestingly, loss of Rtf1 function produced the most severe defects, resulting in a nearly complete absence of cardiac precursors. Based on gene expression analyses and transplantation studies, we found that the PAF1C regulates the developmental potential of the lateral plate mesoderm and is required cell autonomously for the specification of cardiac precursors. Our findings demonstrate critical but differential requirements for PAF1C components in zebrafish cardiac specification and heart morphogenesis.


Subject(s)
Body Patterning , Heart/embryology , Myocytes, Cardiac/cytology , Transcription Factors/physiology , Zebrafish Proteins/physiology , Zebrafish/embryology , Animals , Cell Movement , Morphogenesis , Nuclear Proteins/physiology , Stem Cells/physiology
8.
Dev Biol ; 341(1): 167-75, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20178782

ABSTRACT

Leo1 is a component of the Polymerase-Associated Factor 1 (PAF1) complex, an evolutionarily conserved protein complex involved in gene transcription regulation and chromatin remodeling. The role of leo1 in vertebrate embryogenesis has not previously been examined. Here, we report that zebrafish leo1 encodes a nuclear protein that has a similar molecular structure to Leo1 proteins from other species. From a genetic screen, we identified a zebrafish mutant defective in the leo1 gene. The truncated Leo1(LA1186) protein lacks a nuclear localization signal and is distributed mostly in the cytoplasm. Phenotypic analysis showed that while the initial patterning of the primitive heart tube is not affected in leo1(LA1186) mutant embryos, the differentiation of cardiomyocytes at the atrioventricular boundary is aberrant, suggesting a requirement for Leo1 in cardiac differentiation. In addition, the expression levels of markers for neural crest-derived cells such as crestin, gch2, dct and mitfa are greatly reduced in leo1(LA1186) mutants, indicating a requirement for Leo1 in maintaining the neural crest population. Consistent with this finding, melanocyte and xanthophore populations are severely reduced, craniofacial cartilage is barely detectable, and mbp-positive glial cells are absent in leo1(LA1186) mutants after three days of development. Taken together, these results provide the first genetic evidence of the requirement for Leo1 in the development of the heart and neural crest cell populations.


Subject(s)
Heart/embryology , Neural Crest/metabolism , Nuclear Proteins/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Cell Differentiation , DNA-Directed RNA Polymerases/metabolism , Mutation , Nuclear Proteins/genetics , Zebrafish Proteins/genetics
9.
J Oncol ; 2010: 568938, 2010.
Article in English | MEDLINE | ID: mdl-20037743

ABSTRACT

The epidermal growth factor receptor is overexpressed in up to 60% of ovarian epithelial malignancies. EGFR regulates complex cellular events due to the large number of ligands, dimerization partners, and diverse signaling pathways engaged. In ovarian cancer, EGFR activation is associated with increased malignant tumor phenotype and poorer patient outcome. However, unlike some other EGFR-positive solid tumors, treatment of ovarian tumors with anti-EGFR agents has induced minimal response. While the amount of information regarding EGFR-mediated signaling is considerable, current data provides little insight for the lack of efficacy of anti-EGFR agents in ovarian cancer. More comprehensive, systematic, and well-defined approaches are needed to dissect the roles that EGFR plays in the complex signaling processes in ovarian cancer as well as to identify biomarkers that can accurately predict sensitivity toward EGFR-targeted therapeutic agents. This new knowledge could facilitate the development of rational combinatorial therapies to sensitize tumor cells toward EGFR-targeted therapies.

10.
Nature ; 459(7243): 98-102, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19305393

ABSTRACT

Hedgehog (Hh) signalling is essential for several aspects of embryogenesis. In Drosophila, Hh transduction is mediated by a cytoplasmic signalling complex that includes the putative serine-threonine kinase Fused (Fu) and the kinesin Costal 2 (Cos2, also known as Cos), yet Fu does not have a conserved role in Hh signalling in mammals. Mouse Fu (also known as Stk36) mutants are viable and seem to respond normally to Hh signalling. Here we show that mouse Fu is essential for construction of the central pair apparatus of motile, 9+2 cilia and offers a new model of human primary ciliary dyskinesia. We found that mouse Fu physically interacts with Kif27, a mammalian Cos2 orthologue, and linked Fu to known structural components of the central pair apparatus, providing evidence for the first regulatory component involved in central pair construction. We also demonstrated that zebrafish Fu is required both for Hh signalling and cilia biogenesis in Kupffer's vesicle. Mouse Fu rescued both Hh-dependent and -independent defects in zebrafish. Our results delineate a new pathway for central pair apparatus assembly, identify common regulators of Hh signalling and motile ciliogenesis, and provide insights into the evolution of the Hh cascade.


Subject(s)
Cilia/physiology , Hedgehog Proteins/physiology , Repressor Proteins/metabolism , Signal Transduction/physiology , Animals , Axin Protein , Kinesins/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Phenotype , Repressor Proteins/genetics , Zebrafish/embryology
12.
Proc Natl Acad Sci U S A ; 103(46): 17225-30, 2006 Nov 14.
Article in English | MEDLINE | ID: mdl-17085591

ABSTRACT

Transcription enhancer factor 1 is essential for cardiac, skeletal, and smooth muscle development and uses its N-terminal TEA domain (TEAD) to bind M-CAT elements. Here, we present the first structure of TEAD and show that it is a three-helix bundle with a homeodomain fold. Structural data reveal how TEAD binds DNA. Using structure-function correlations, we find that the L1 loop is essential for cooperative loading of TEAD molecules on to tandemly duplicated M-CAT sites. Furthermore, using a microarray chip-based assay, we establish that known binding sites of the full-length protein are only a subset of DNA elements recognized by TEAD. Our results provide a model for understanding the regulation of genome-wide gene expression during development by TEA/ATTS family of transcription factors.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Base Sequence , DNA/genetics , DNA-Binding Proteins/genetics , Humans , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Phylogeny , Protein Binding , Protein Structure, Tertiary , Sequence Alignment , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...