Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biofabrication ; 15(4)2023 09 22.
Article in English | MEDLINE | ID: mdl-37659401

ABSTRACT

One of the most promising techniques for treating severe peripheral artery disease is the use of cellular tissue-engineered vascular grafts (TEVGs). This study proposes an inverse-gravity (IG) extrusion technique for creating long double-layered cellular TEVGs with diameters over 3 mm. A three-layered coaxial laminar hydrogel flow in an 8 mm-diameter pipe was realised simply by changing the extrusion direction of the hydrogel from being aligned with the direction of gravity to against it. This technique produced an extruded mixture of human aortic smooth muscle cells (HASMCs) and type-I collagen as a tubular structure with an inner diameter of 3.5 mm. After a 21 day maturation period, the maximal burst pressure, longitudinal breaking force, and circumferential breaking force of the HASMC TEVG were 416 mmHg, 0.69 N, and 0.89 N, respectively. The HASMC TEVG was endothelialised with human umbilical vein endothelial cells to form a tunica intima that simulated human vessels. Besides subcutaneous implantability on mice, the double-layered blood vessels showed a considerably lower adherence of platelets and red blood cells once exposed to heparinised mouse blood and were considered nonhaemolytic. The proposed IG extrusion technique can be applied in various fields requiring multilayered materials with large diameters.


Subject(s)
Aorta , Blood Platelets , Humans , Animals , Mice , Blood Vessel Prosthesis , Human Umbilical Vein Endothelial Cells , Hydrogels
2.
Int J Bioprint ; 8(3): 557, 2022.
Article in English | MEDLINE | ID: mdl-36105137

ABSTRACT

Rapid construction of pre-vascular structure is highly desired for engineered thick tissue. However, angiogenesis in free-standing scaffold has been rarely reported because of limitation in growth factor (GF) supply into the scaffold. This study, for the 1st time, investigated angiogenic sprouting in free-standing two-vasculature-embedded scaffold with three different culture conditions and additional GFs. A two-core laminar flow device continuously extruded one vascular channel with human umbilical vein endothelial cells (HUVECs) and a 3 mg/ml type-1 collagen, one hollow channel, and a shell layer with 2% w/v gelatin-alginate (70:30) composite. Under the GF flowing condition, angiogenic sprouting from the HUVEC vessel had started since day 1 and gradually grew toward the hollow channel on day 10. Due to the medium flowing, the HUVECs showed elongated spindle-like morphology homogeneously. Their viability has been over 80% up to day 10. This approach could apply to vascular investigation, and drug discovery further, not only to the engineered thick tissue.

3.
Medicine (Baltimore) ; 99(19): e19972, 2020 May.
Article in English | MEDLINE | ID: mdl-32384447

ABSTRACT

The objective of this proof-of-concept study was to demonstrate the targeted delivery of erythropoietin (EPO) using magnetically guided magnetic nanoparticles (MNPs).MNPs consisting of a ferric-ferrous mixture (FeCl3·6H2O and FeCl2·4H2O) were prepared using a co-precipitation method. The drug delivery system (DDS) was manufactured via the spray-drying technique using a nanospray-dryer. The DDS comprised 7.5 mg sodium alginate, 150 mg MNPs, and 1000 IU EPO.Scanning electron microscopy revealed DDS particles no more than 500 nm in size. Tiny particles on the rough surfaces of the DDS particles were composed of MNPs and/or EPO, unlike the smooth surfaces of the only alginate particles. Transmission electron microscopy showed the tiny particles from 5 to 20 nm in diameter. Fourier-transform infrared spectroscopy revealed DDS peaks characteristic of MNPs as well as of alginate. Thermal gravimetric analysis presented that 50% of DDS weight was lost in a single step around 500°C. The mode size of the DDS particles was approximately 850 nm under in vivo conditions. Standard soft lithography was applied to DDS particles prepared with fluorescent beads using a microchannel fabricated to have one inlet and two outlets in a Y-shape. The fluorescent DDS particles reached only one outlet reservoir in the presence of a neodymium magnet. The neurotoxicity was evaluated by treating SH-SY5Y cells in 48-well plates (1 × 10 cells/well) with 2 µL of a solution containing sodium alginate (0.075 mg/mL), MNPs (1.5 mg/mL), or sodium alginate + MNPs. A cell viability assay kit was used to identify a 93% cell viability after MNP treatment and a 94% viability after sodium alginate + MNP treatment, compared with the control. As for the DDS particle neurotoxicity, a 95% cell viability was noticed after alginate-encapsulated MNPs treatment and a 93% cell viability after DDS treatment, compared with the control.The DDS-EPO construct developed here can be small under in vivo conditions enough to pass through the lung capillaries with showing the high coating efficiency. It can be guided using magnetic control without displaying significant neurotoxicity in the form of solution or particles.


Subject(s)
Drug Carriers/pharmacology , Drug Delivery Systems/methods , Erythropoietin/pharmacology , Magnetite Nanoparticles , Coated Materials, Biocompatible/pharmacology , Contrast Media , Hematologic Agents/pharmacology , Humans , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Materials Testing , Microscopy, Electron, Scanning/methods , Particle Size , Surface Properties , Trauma, Nervous System/therapy
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4198-4201, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441280

ABSTRACT

By using the microfluidic spinning technology we generated tiny hydrogel tubular scaffolds. Fibroblast (NIH/3T3) cell cultures were performed for seventeen days to demonstrate the potential of cell attachment on surfaces and encapsulation in the wall of he microscopic scaffolds for blood vessel-like structure forming. Over theculture period, the NIH/3T3 confluence reached around 80\%, and 100\% on the inside and outside scaffolds' surface respectively while cells proliferated and coalesced in cell group in the hydrogel wall. These results could further be applied to endothelial co-culturing for forming engineered blood vessel.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Animals , Coculture Techniques , Humans , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...