Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 9(6)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319712

ABSTRACT

Dedifferentiation or phenotype switching refers to the transition from a proliferative to an invasive cellular state. We previously identified a 122-gene epigenetic gene signature that classifies primary melanomas as low versus high risk (denoted as Epgn1 or Epgn3). We found that the transcriptomes of the Epgn1 low-risk and Epgn3 high-risk cells are similar to the proliferative and invasive cellular states, respectively. These signatures were further validated in melanoma tumor samples. Examination of the chromatin landscape revealed differential H3K27 acetylation in the Epgn1 low-risk versus Epgn3 high-risk cell lines that corroborated with a differential super-enhancer and enhancer landscape. Melanocytic lineage genes (MITF, its targets and regulators) were associated with super-enhancers in the Epgn1 low-risk state, whereas invasiveness genes were linked with Epgn3 high-risk status. We identified the ITGA3 gene as marked by a super-enhancer element in the Epgn3 invasive cells. Silencing of ITGA3 enhanced invasiveness in both in vitro and in vivo systems, suggesting it as a negative regulator of invasion. In conclusion, we define chromatin landscape changes associated with Epgn1/Epgn3 and phenotype switching during early steps of melanoma progression that regulate transcriptional reprogramming. This super-enhancer and enhancer-driven epigenetic regulatory mechanism resulting in major changes in the transcriptome could be important in future therapeutic targeting efforts.


Subject(s)
Histones , Melanoma , Humans , Histones/genetics , Histones/metabolism , Melanoma/pathology , Cell Dedifferentiation/genetics , Acetylation , Cell Line, Tumor , Chromatin/genetics
2.
Cell Rep ; 39(1): 110637, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385731

ABSTRACT

ARID2 is the most recurrently mutated SWI/SNF complex member in melanoma; however, its tumor-suppressive mechanisms in the context of the chromatin landscape remain to be elucidated. Here, we model ARID2 deficiency in melanoma cells, which results in defective PBAF complex assembly with a concomitant genomic redistribution of the BAF complex. Upon ARID2 depletion, a subset of PBAF and shared BAF-PBAF-occupied regions displays diminished chromatin accessibility and associated gene expression, while BAF-occupied enhancers gain chromatin accessibility and expression of genes linked to the process of invasion. As a function of altered accessibility, the genomic occupancy of melanoma-relevant transcription factors is affected and significantly correlates with the observed transcriptional changes. We further demonstrate that ARID2-deficient cells acquire the ability to colonize distal organs in multiple animal models. Taken together, our results reveal a role for ARID2 in mediating BAF and PBAF subcomplex chromatin dynamics with consequences for melanoma metastasis.


Subject(s)
Chromosomal Proteins, Non-Histone , Melanoma , Transcription Factors , Animals , Chromatin , Chromatin Assembly and Disassembly , Gene Expression Regulation , Humans , Melanoma/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Commun Biol ; 4(1): 312, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33750924

ABSTRACT

Downregulation of the PTEN tumor suppressor transcript is frequent in breast cancer and associates with poor prognosis and triple-negative breast cancer (TNBC) when comparing breast cancers to one another. Here we show that in almost all cases, when comparing breast tumors to adjacent normal ducts, PTEN expression is decreased and the PRC2-associated methyltransferase EZH2 is increased. We further find that when comparing breast cancer cases in large cohorts, EZH2 inversely correlates with PTEN expression. Within the highest EZH2 expressing group, NOTCH alterations are frequent, and also associate with decreased PTEN expression. We show that repression of PTEN occurs through the combined action of NOTCH (NOTCH1 or NOTCH2) and EZH2 alterations in a subset of breast cancers. In fact, in cases harboring NOTCH1 mutation or a NOTCH2 fusion gene, NOTCH drives EZH2, HES-1, and HEY-1 expression to repress PTEN transcription at the promoter, which may contribute to poor prognosis in this subgroup. Restoration of PTEN expression can be achieved with an EZH2 inhibitor (UNC1999), a γ-secretase inhibitor (Compound E), or knockdown of EZH2 or NOTCH. These findings elucidate a mechanism of transcriptional repression of PTEN induced by NOTCH1 or NOTCH2 alterations, and identifies actionable signaling pathways responsible for driving a large subset of poor-prognosis breast cancers.


Subject(s)
Breast Neoplasms/enzymology , Enhancer of Zeste Homolog 2 Protein/metabolism , PTEN Phosphohydrolase/metabolism , Receptor, Notch1/metabolism , Receptor, Notch2/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Enhancer of Zeste Homolog 2 Protein/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Fusion , Humans , Mutation , PTEN Phosphohydrolase/genetics , Receptor, Notch1/genetics , Receptor, Notch2/genetics , Transcription, Genetic
4.
Gut ; 66(7): 1286-1296, 2017 07.
Article in English | MEDLINE | ID: mdl-27849562

ABSTRACT

OBJECTIVE: Advanced hepatocellular carcinoma (HCC) is a lethal malignancy with limited treatment options. Palbociclib, a well-tolerated and selective CDK4/6 inhibitor, has shown promising results in the treatment of retinoblastoma (RB1)-positive breast cancer. RB1 is rarely mutated in HCC, suggesting that palbociclib could potentially be used for HCC therapy. Here, we provide a comprehensive characterisation of the efficacy of palbociclib in multiple preclinical models of HCC. DESIGN: The effects of palbociclib on cell proliferation, cellular senescence and cell death were investigated in a panel of human liver cancer cell lines, in ex vivo human HCC samples, in a genetically engineered mouse model of liver cancer, and in human HCC xenografts in vivo. The mechanisms of intrinsic and acquired resistance to palbociclib were assessed in human liver cancer cell lines and human HCC samples by protein and gene expression analyses. RESULTS: Palbociclib suppressed cell proliferation in human liver cancer cell lines by promoting a reversible cell cycle arrest. Intrinsic and acquired resistance to palbociclib was determined by loss of RB1. A signature of 'RB1 loss of function' was found in <30% of HCC samples. Palbociclib, alone or combined with sorafenib, the standard of care for HCC, impaired tumour growth in vivo and significantly increased survival. CONCLUSIONS: Palbociclib shows encouraging results in preclinical models of HCC and represents a novel therapeutic strategy for HCC treatment, alone or particularly in combination with sorafenib. Palbociclib could potentially benefit patients with RB1-proficient tumours, which account for 70% of all patients with HCC.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Antineoplastic Combined Chemotherapy Protocols , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Senescence/drug effects , Drug Evaluation, Preclinical , Humans , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Phenylurea Compounds/pharmacology , Retinoblastoma Binding Proteins/metabolism , Sorafenib , Ubiquitin-Protein Ligases/metabolism
5.
Nat Genet ; 46(10): 1060-2, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25194279

ABSTRACT

Here we report the discovery of recurrent mutations concentrated at an ultraviolet signature hotspot in KNSTRN, which encodes a kinetochore protein, in 19% of cutaneous squamous cell carcinomas (SCCs). Cancer-associated KNSTRN mutations, most notably those encoding p.Ser24Phe, disrupt chromatid cohesion in normal cells, occur in SCC precursors, correlate with increased aneuploidy in primary tumors and enhance tumorigenesis in vivo. These findings suggest a role for KNSTRN mutagenesis in SCC development.


Subject(s)
Carcinoma, Squamous Cell/genetics , Cell Cycle Proteins/genetics , Kinetochores/metabolism , Microtubule-Associated Proteins/genetics , Point Mutation , Skin Neoplasms/genetics , Aneuploidy , Animals , Carcinogenesis/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cells, Cultured , Female , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Keratinocytes/transplantation , Mice, Inbred NOD , Mice, SCID , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Transfection , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...