Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37021858

ABSTRACT

Computer-aided diagnosis using dermoscopy images is a promising technique for improving the efficiency of facial skin disorder diagnosis and treatment. Hence, in this study, we propose a low-level laser therapy (LLLT) system with a deep neural network and medical internet of things (MIoT) assistance. The main contributions of this study are to (1) provide a comprehensive hardware and software design for an automatic phototherapy system, (2) propose a modified-U2Net deep learning model for facial dermatological disorder segmentation, and (3) develop a synthetic data generation process for the proposed models to address the issue of the limited and imbalanced dataset. Finally, a MIoT-assisted LLLT platform for remote healthcare monitoring and management is proposed. The trained U2-Net model achieved a better performance on untrained dataset than other recent models, with an average Accuracy of 97.5%, Jaccard index of 74.7%, and Dice coefficient of 80.6%. The experimental results demonstrated that our proposed LLLT system can accurately segment facial skin diseases and automatically apply for phototherapy. The integration of artificial intelligence and MIoT-based healthcare platforms is a significant step toward the development of medical assistant tools in the near future.

2.
Biosensors (Basel) ; 12(3)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35323409

ABSTRACT

Monitoring the vital signs and physiological responses of the human body in daily activities is particularly useful for the early diagnosis and prevention of cardiovascular diseases. Here, we proposed a wireless and flexible biosensor patch for continuous and longitudinal monitoring of different physiological signals, including body temperature, blood pressure (BP), and electrocardiography. Moreover, these modalities for tracking body movement and GPS locations for emergency rescue have been included in biosensor devices. We optimized the flexible patch design with high mechanical stretchability and compatibility that can provide reliable and long-term attachment to the curved skin surface. Regarding smart healthcare applications, this research presents an Internet of Things-connected healthcare platform consisting of a smartphone application, website service, database server, and mobile gateway. The IoT platform has the potential to reduce the demand for medical resources and enhance the quality of healthcare services. To further address the advances in non-invasive continuous BP monitoring, an optimized deep learning architecture with one-channel electrocardiogram signals is introduced. The performance of the BP estimation model was verified using an independent dataset; this experimental result satisfied the Association for the Advancement of Medical Instrumentation, and the British Hypertension Society standards for BP monitoring devices. The experimental results demonstrated the practical application of the wireless and flexible biosensor patch for continuous physiological signal monitoring with Internet of Medical Things-connected healthcare applications.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Blood Pressure , Humans , Internet , Monitoring, Physiologic
3.
Comput Biol Med ; 136: 104610, 2021 09.
Article in English | MEDLINE | ID: mdl-34274598

ABSTRACT

In low-level laser therapy, providing an optimal dosage and proposing a proper diagnosis before dermatological treatment are essential to reduce the side effects and potential dangers. In this article, a smart LED therapy system for automatic facial acne vulgaris diagnosis based on deep learning and Internet of Things application is proposed. The main goals of this study were to (1) develop an LED therapy device with different power densities and LED grid control; (2) propose a deep learning model based on modified ResNet50 and YOLOv2 for an automatic acne diagnosis; and (3) develop a smartphone application for facial photography image capture and LED therapy parameter configuration. Furthermore, a healthcare Internet of Things (H-IoT) platform for the connectivity between smartphone apps, the cloud server, and the LED therapy device is proposed to improve the efficiency of the treatment process. Experiments were conducted on test data sets divided by a cross-validation method to verify the feasibility of the proposed LED therapy system with automatic facial acne detection. The obtained results evidenced the practical application of the proposed LED therapy system for automatic acne diagnosis and H-IoT-based solutions.


Subject(s)
Acne Vulgaris , Deep Learning , Internet of Things , Acne Vulgaris/therapy , Humans , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL
...