Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 85(5): 1384-1399, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35290219

ABSTRACT

This study involved novel-designed sludge biochar (SB) adsorbed for arsenic removal with lower operating costs and higher adsorption efficiency properties. Generally, biochar only relies on micropores for pollutant adsorption, but physical adsorption is not highly efficient for arsenic removal. Therefore, in order to improve the removal efficiency of arsenic by SB, diethylenetriamine (DETA) and FeCl3 were used in this study to modify the surface of SB by an immersion method. The objectives of this research are to obtain optimum operation conditions by assessing the effect of different Fe content, pH and initial concentration on adsorbing arsenic. This study is the first to use Density Functional Theory (DFT) to simulate and verify the adsorption mechanism of arsenic by SB. Results showed the presence of amine/iron oxyhydroxides functional groups greatly promoted SB surface activity and its arsenic adsorption potential. The surface area, pore volume and pore size of the SB were estimated to be 525 m2 g-1, 0.35 cm3 g-1 and 8.71 nm, respectively. The DFT model result is the same as the result of arsenic adsorption performance with high adsorption energy (-246.3 kJmol-1) and shorter bond distances (1.42 Å), indicating strong chemical adsorption between arsenic and material. The reaction mechanism is divided into four pathways, including oxidation-reduction, complexation, electrostatic adsorption and pore adsorption.


Subject(s)
Arsenic , Amines , Arsenic/chemistry , Charcoal , Hydroxides/chemistry , Sewage
2.
Bioresour Technol ; 273: 573-580, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30476866

ABSTRACT

This study aimed to evaluate treatment performance and membrane fouling of a lab-scale Sponge-MBR under the added ciprofloxacin (CIP) dosages (20; 50; 100 and 200 µg L-1) treating hospital wastewater. The results showed that Sponge-MBR exhibited effective removal of COD (94-98%) during the operation period despite increment of CIP concentrations from 20 to 200 µg L-1. The applied CIP dosage of 200 µg L-1 caused an inhibition of microorganisms in sponges, i.e. significant reduction of the attached biomass and a decrease in the size of suspended flocs. Moreover, this led to deteriorating the denitrification rate to 3-12% compared to 35% at the other lower CIP dosages. Importantly, Sponge-MBR reinforced the stability of CIP removal at various added CIP dosages (permeate of below 13 µg L-1). Additionally, the fouling rate at CIP dosage of 200 µg L-1 was 30.6 times lower compared to the control condition (no added CIP dosage).


Subject(s)
Bioreactors , Ciprofloxacin/pharmacology , Waste Disposal, Fluid/methods , Wastewater/chemistry , Biomass , Hospitals
3.
Bioresour Technol ; 247: 992-998, 2018 Jan.
Article in English | MEDLINE | ID: mdl-30060439

ABSTRACT

Wetland roof (WR) could bring many advantages for tropical cities such as thermal benefits, flood control, green coverage and domestic wastewater treatment. This study investigates wastewater treatment and biomass growth of eight local plants in shallow bed WRs. Results showed that removal rates of WRs were 21-28 kg COD ha-1 day-1, 9-13 kg TN ha-1 day-1 and 0.5-0.9 kg TP ha-1 day-1, respectively. The plants generated more biomass at lower hydraulic loading rate (HLR). Dry biomass growth was 0.4-28.1 g day-1 for average HLR of 247-403 m3 ha-1 day-1. Green leaf area of the plants was ranging as high as 67-99 m2 leaves per m2 of WR. In general, the descent order of Kyllinga brevifoliaRottb (WR8), Cyperus javanicus Houtt (WR5) and Imperata cylindrical (WR4) was suggested as effective vegetations in WR conditions in terms of wastewater treatment, dry biomass growth and green coverage ratio.


Subject(s)
Facility Design and Construction , Plant Development , Wastewater , Wetlands , Biomass , Cities , Cyperus , Plants , Waste Disposal, Fluid
4.
J Nanosci Nanotechnol ; 16(6): 6567-74, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27427754

ABSTRACT

Di-n-butyl phthalate (DBP) is a type of phthalate ester. In recent years, an increasing number of studies have examined the removal of DBP. In this study we use a composite material of N-Ti/13X/MCM-41, synthesized by nitrogen, molecular sieve 13X, tetrabutyl orthotitanate and tetraethyl orthosilicate as raw materials, CTAB as a structural template and tetrabutyl titanate and urea under hydrothermal conditions. The optimized experimental conditions, such as the amount of material, reaction time, pH value and initial concentration were tested. The surface areas of N-Ti/13X/MCM-41 were found to be 664 m2g(-1). TEM micrographs revealed N-Ti/13X/MCM-41 is consisting of aggregates of spherical particles, similar with standard synthesized MCM-41 (Mobil Composition of Matter No. 41). Through photocatalytic degradation experiments, the optimum degradation efficiency of DBP was more than 90% at a pH 6.0 with catalyst dosing of 0.15 g L(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...