Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38902926

ABSTRACT

The gut microbiome affects brain and neuronal development and may contribute to the pathophysiology of neurodevelopmental disorders. However, it is unclear how risk genes associated with such disorders affect gut physiology in a manner that could impact microbial colonization and how the mechanical properties of the gut tissue might play a role in gut-brain bidirectional communication. To address this, we used Drosophila melanogaster with a null mutation in the gene kismet, an ortholog of chromodomain helicase DNA-binding protein (CHD) family members CHD7 and CHD8. In humans, these are risk genes for neurodevelopmental disorders with co-occurring gastrointestinal symptoms. We found that kismet mutant flies have a significant increase in gastrointestinal transit time, indicating the functional homology of kismet with CHD7/CHD8 in vertebrates. Rheological characterization of dissected gut tissue revealed significant changes in the mechanics of kismet mutant gut elasticity, strain stiffening behavior, and tensile strength. Using 16S rRNA metagenomic sequencing, we also found that kismet mutants have reduced diversity and abundance of gut microbiota at every taxonomic level. To investigate the connection between the gut microbiome and behavior, we depleted gut microbiota in kismet mutant and control flies and quantified the flies' courtship behavior. Depletion of gut microbiota rescued courtship defects of kismet mutant flies, indicating a connection between gut microbiota and behavior. In striking contrast, depletion of the gut microbiome in the control strain reduced courtship activity, demonstrating that antibiotic treatment can have differential impacts on behavior and may depend on the status of microbial dysbiosis in the gut prior to depletion. We propose that Kismet influences multiple gastrointestinal phenotypes that contribute to the gut-microbiome-brain axis to influence behavior. We also suggest that gut tissue mechanics should be considered as an element in the gut-brain communication loop, both influenced by and potentially influencing the gut microbiome and neurodevelopment.

2.
Nat Commun ; 15(1): 2111, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454000

ABSTRACT

Investigative exploration and foraging leading to food consumption have vital importance, but are not well-understood. Since GABAergic inputs to the lateral and ventrolateral periaqueductal gray (l/vlPAG) control such behaviors, we dissected the role of vgat-expressing GABAergic l/vlPAG cells in exploration, foraging and hunting. Here, we show that in mice vgat l/vlPAG cells encode approach to food and consumption of both live prey and non-prey foods. The activity of these cells is necessary and sufficient for inducing food-seeking leading to subsequent consumption. Activation of vgat l/vlPAG cells produces exploratory foraging and compulsive eating without altering defensive behaviors. Moreover, l/vlPAG vgat cells are bidirectionally interconnected to several feeding, exploration and investigation nodes, including the zona incerta. Remarkably, the vgat l/vlPAG projection to the zona incerta bidirectionally controls approach towards food leading to consumption. These data indicate the PAG is not only a final downstream target of top-down exploration and foraging-related inputs, but that it also influences these behaviors through a bottom-up pathway.


Subject(s)
Periaqueductal Gray , Mice , Animals , Periaqueductal Gray/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...