Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Orig Life Evol Biosph ; 48(4): 395-406, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30953250

ABSTRACT

Chiral recognition between tryptophan (Trp) and carbohydrates such as D-glucose (D-Glc), methyl-α-D-glucoside (D-glucoside), D-maltose, and D-cellobiose in cold gas-phase cluster ions was investigated as a model for chemical evolution in interstellar molecular clouds using a tandem mass spectrometer containing a cold ion trap. The photodissociation mass spectra of cold gas-phase clusters that contained Na+, Trp enantiomers, and D-maltose showed that Na+(D-Glc) was formed via the glycosidic bond cleavage of D-maltose from photoexcited homochiral Na+(D-Trp)(D-maltose), while the dissociation did not occur in heterochiral Na+(L-Trp)(D-maltose). The enantiomer-selective dissociation was also observed in the case of D-cellobiose. The enantiomer-selective glycosidic bond cleavage of disaccharides suggested that photoexcited D-Trp could prevent chemical evolution of sugar chains from D-enantiomer of carbohydrates in molecular clouds. The spectra of gas-phase clusters that contained Na+, Trp enantiomers, and D-Glc indicated that enantiomer-selective protonation of L-Trp from D-Glc could induce enantiomeric excess via collision-activated dissociation of the protonated L-Trp. In the case of protonated clusters, photoexcited H+(L-Trp) dissociated via Cα-Cß bond cleavage in the presence of D-Glc or D-glucoside, where the excited states of H+(L-Trp) contributed to the enantiomer-selective reaction in the clusters. These enantiomer selectivities in cold gas-phase clusters indicated that chirality of a molecule induced enantiomeric excess of other molecules via enantiomer-selective reactions in molecular clouds.


Subject(s)
Carbohydrates/chemistry , Gases/chemistry , Ions/chemistry , Photolysis , Tryptophan/chemistry , Cold Temperature , Evolution, Planetary , Origin of Life , Stereoisomerism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...