Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet A ; 179(12): 2517-2531, 2019 12.
Article in English | MEDLINE | ID: mdl-31639285

ABSTRACT

The hedgehog (Hh) pathway is highly conserved and required for embryonic patterning and determination. Mutations in the Hh pathway are observed in sporadic tumors as well as under syndromic conditions. Common to these syndromes are the findings of polydactyly/syndactyly and brain overgrowth. The latter is also a finding most commonly observed in the cases of mutations in the PI3K/AKT/mTOR pathway. We have identified novel Hh pathway mutations and structural copy number variations in individuals with somatic overgrowth, macrocephaly, dysmorphic facial features, and developmental delay, which phenotypically closely resemble patients with phosphatase and tensin homolog (PTEN) mutations. We hypothesized that brain overgrowth and phenotypic overlap with syndromic overgrowth syndromes in these cases may be due to crosstalk between the Hh and PI3K/AKT/mTOR pathways. To test this, we modeled disease-associated variants by generating PTCH1 and Suppressor of Fused (SUFU) heterozygote cell lines using the CRISPR/Cas9 system. These cells demonstrate activation of PI3K signaling and increased phosphorylation of its downstream target p4EBP1 as well as a distinct cellular phenotype. To further investigate the mechanism underlying this crosstalk, we treated human neural stem cells with sonic hedgehog (SHH) ligand and performed transcriptional analysis of components of the mTOR pathway. These studies identified decreased expression of a set of mTOR negative regulators, leading to its activation. We conclude that there is a significant crosstalk between the SHH and PI3K/AKT/mTOR. We propose that this crosstalk is responsible for why mutations in PTCH1 and SUFU lead to macrocephaly phenotypes similar to those observed in PTEN hamartoma and other overgrowth syndromes associated with mutations in PI3K/AKT/mTOR pathway genes.


Subject(s)
Hedgehog Proteins/metabolism , Megalencephaly/genetics , Megalencephaly/metabolism , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , CRISPR-Cas Systems , Cell Line , Child, Preschool , Female , Gene Deletion , Haploinsufficiency , Humans , Infant , Male , Megalencephaly/diagnosis , Models, Biological , Neural Stem Cells
3.
Am J Med Genet A ; 173(5): 1319-1327, 2017 May.
Article in English | MEDLINE | ID: mdl-28296084

ABSTRACT

The cohesin complex is an evolutionarily conserved multi-subunit protein complex which regulates sister chromatid cohesion during mitosis and meiosis. Additionally, the cohesin complex regulates DNA replication, DNA repair, and transcription. The core of the complex consists of four subunits: SMC1A, SMC3, RAD21, and STAG1/2. Loss-of-function mutations in many of these proteins have been implicated in human developmental disorders collectively termed "cohesinopathies." Through clinical exome sequencing (CES) of an 8-year-old girl with a clinical history of global developmental delay, microcephaly, microtia with hearing loss, language delay, ADHD, and dysmorphic features, we describe a heterozygous de novo variant (c.205C>T; p.(Arg69*)) in the integral cohesin structural protein, STAG2. This variant is associated with decreased STAG2 protein expression. The analyses of metaphase spreads did not exhibit premature sister chromatid separation; however, delayed sister chromatid cohesion was observed. To further support the pathogenicity of STAG2 variants, we identified two additional female cases from the DECIPHER research database with mutations in STAG2 and phenotypes similar to our patient. Interestingly, the clinical features of these three cases are remarkably similar to those observed in other well-established cohesinopathies. Herein, we suggest that STAG2 is a dosage-sensitive gene and that heterozygous loss-of-function variants lead to a cohesinopathy.


Subject(s)
Antigens, Nuclear/genetics , Congenital Abnormalities/genetics , Developmental Disabilities/genetics , Microcephaly/genetics , Antigens, Nuclear/biosynthesis , Cell Cycle Proteins/genetics , Child , Chromosomal Proteins, Non-Histone/genetics , Congenital Abnormalities/physiopathology , Developmental Disabilities/physiopathology , Female , Gene Expression Regulation , Heterozygote , Humans , Microcephaly/physiopathology , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...