Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(21): e2310351, 2024 May.
Article in English | MEDLINE | ID: mdl-38591658

ABSTRACT

Obesity is a significant health concern that often leads to metabolic dysfunction and chronic diseases. This study introduces a novel approach to combat obesity using orally ingested self-powered electrostimulators. These electrostimulators consist of piezoelectric BaTiO3 (BTO) particles conjugated with capsaicin (Cap) and aim to activate the vagus nerve. Upon ingestion by diet-induced obese (DIO) mice, the BTO@Cap particles specifically target and bind to Cap-sensitive sensory nerve endings in the gastric mucosa. In response to stomach peristalsis, these particles generate electrical signals. The signals travel via the gut-brain axis, ultimately influencing the hypothalamus. By enhancing satiety signals in the brain, this neuromodulatory intervention reduces food intake, promotes energy metabolism, and demonstrates minimal toxicity. Over a 3-week period of daily treatments, DIO mice treated with BTO@Cap particles show a significant reduction in body weight compared to control mice, while maintaining their general locomotor activity. Furthermore, this BTO@Cap particle-based treatment mitigates various metabolic alterations associated with obesity. Importantly, this noninvasive and easy-to-administer intervention holds potential for addressing other intracerebral neurological diseases.


Subject(s)
Metabolic Diseases , Obesity , Animals , Obesity/metabolism , Obesity/therapy , Mice , Metabolic Diseases/metabolism , Metabolic Diseases/therapy , Metabolic Diseases/drug therapy , Brain-Gut Axis , Titanium/chemistry , Capsaicin/pharmacology , Capsaicin/administration & dosage , Administration, Oral , Electric Stimulation Therapy/methods , Mice, Inbred C57BL , Male , Barium Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...