Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cosmet Sci ; 39(4): 450-456, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28295406

ABSTRACT

OBJECTIVE: This study aimed at increasing the concentration of a hydrophobic lightening agent, Omegalight® , in a hydrophilic cosmetic product by means of encapsulation in lipid-based submicron capsules. The core of these capsules is entirely made of the commercial lightening agent. METHODS: Lipid-based encapsulation systems (LNC) were prepared by the PIT method. Their physicochemical properties were followed over 6 months by dynamic light scattering and zeta potential measurements, and in parallel, the potential degradation of the active ingredient was monitored by HPLC. The stability of the capsules in a cosmetic gel was studied by spectrofluorimetry and rheology measurements. Sensory analysis was used to determine the influence of the presence of capsules in the gel on the consumer's experience. RESULTS: LNC encapsulating Omegalight® were prepared on a laboratory scale and then on a semi-pilot scale. Their hydrodynamic diameters are around 230 nm. The concentration of Omegalight® in the capsules reaches about 84% w/w, which corresponds to 42% of active ingredient. LNC can be dispersed without degradation at concentrations of up to 20% w/w in a hydrogel without modification of the physicochemical or sensory properties of the gel. CONCLUSION: Lipid-based capsules (LNC), an encapsulation system useful for the epidermal delivery of hydrophobic compounds, were adapted to the encapsulation of a commercial lightening agent. The encapsulation permits the dispersion in a stable manner of a very high concentration of a hydrophobic active molecule in a hydrogel while maintaining the physicochemical and sensory properties of the gel.


Subject(s)
Lipids/chemistry , Skin Lightening Preparations/administration & dosage , Chromatography, High Pressure Liquid , Hydrophobic and Hydrophilic Interactions , Quality Control
2.
Nanotechnology ; 26(25): 255101, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-26033822

ABSTRACT

The cutaneous penetration of hydrophobic active molecules is of foremost concern in the dermatology and cosmetic formulation fields. The poor solubility in water of those molecules limits their use in hydrophilic forms such as gels, which are favored by patients with chronic skin disease. The aim of this work is to design a novel nanocarrier of hydrophobic active molecules and to determine its potential as an ingredient of a topical form. The nanocarrier consists of an oily core surrounded by a protective shell of alginate, a natural polysaccharide isolated from brown algae. These calcium alginate-based nanocarriers (CaANCs) were prepared at room temperature and without the use of organic solvent by an accelerated nanoemulsification-polymer crosslinking method. The size (hydrodynamic diameter ~200 nm) and surface charge (zeta potential ~ - 30 mV) of the CaANCs are both compatible with their application on skin. CaANCs loaded with a fluorescent label were stable in model hydrophilic galenic forms under different storage conditions. Curcumin was encapsulated in CaANCs with an efficiency of ~95%, fully retaining its antioxidant activity. The application of the curcumin-loaded CaANCs on excised human skin led to a significant accumulation of the active molecules in the upper layers of the skin, asserting the potential of these nanocarriers in active pharmaceutical and cosmetic ingredients topical delivery.


Subject(s)
Alginates/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Hydrogels/chemistry , Nanoparticles/chemistry , Administration, Cutaneous , Curcumin/administration & dosage , Curcumin/analysis , Curcumin/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Hydrogels/administration & dosage , Hydrophobic and Hydrophilic Interactions , Particle Size , Skin Absorption/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...