Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 12(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35808019

ABSTRACT

One approach for solving the problem of antibiotic resistance and bacterial persistence in biofilms is treatment with metals, including silver in the form of silver nanoparticles (AgNPs). Green synthesis is an environmentally friendly method to synthesize nanoparticles with a broad spectrum of unique properties that depend on the plant extracts used. AgNPs with antibacterial and antibiofilm effects were obtained using green synthesis from plant extracts of Lagerstroemia indica (AgNPs_LI), Alstonia scholaris (AgNPs_AS), and Aglaonema multifolium (AgNPs_AM). Nanoparticles were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The ability to quench free radicals and total phenolic content in solution were also evaluated. The antibacterial activity of AgNPs was studied by growth curves as well as using a diffusion test on agar medium plates to determine minimal inhibitory concentrations (MICs). The effect of AgNPs on bacterial biofilms was evaluated by crystal violet (CV) staining. Average minimum inhibitory concentrations of AgNPs_LI, AgNPs_AS, AgNPs_AM were 15 ± 5, 20 + 5, 20 + 5 µg/mL and 20 ± 5, 15 + 5, 15 + 5 µg/mL against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively. The E. coli strain formed biofilms in the presence of AgNPs, a less dense biofilm than the S. aureus strain. The highest inhibitory and destructive effect on biofilms was exhibited by AgNPs prepared using an extract from L. indica.

2.
Pharmaceutics ; 12(9)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872234

ABSTRACT

Silver nanoparticles (AgNPs) have recently become very attractive for the scientific community due to their broad spectrum of applications in the biomedical field. The main advantages of AgNPs include a simple method of synthesis, a simple way to change their morphology and high surface area to volume ratio. Much research has been carried out over the years to evaluate their possible effectivity against microbial organisms. The most important factors which influence the effectivity of AgNPs against microorganisms are the method of their preparation and the type of application. When incorporated into fabric wound dressings and other textiles, AgNPs have shown significant antibacterial activity against both Gram-positive and Gram-negative bacteria and inhibited biofilm formation. In this review, the different routes of synthesizing AgNPs with controlled size and geometry including chemical, green, irradiation and thermal synthesis, as well as the different types of application of AgNPs for wound dressings such as membrane immobilization, topical application, preparation of nanofibers and hydrogels, and the mechanism behind their antimicrobial activity, have been discussed elaborately.

3.
Nanomaterials (Basel) ; 10(5)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365860

ABSTRACT

The irradiance of ultraviolet (UV) radiation is a physical parameter that significantly influences biological molecules by affecting their molecular structure. The influence of UV radiation on nanoparticles has not been investigated much. In this work, the ability of cadmium telluride quantum dots (CdTe QDs) to respond to natural UV radiation was examined. The average size of the yellow QDs was 4 nm, and the sizes of green, red and orange QDs were 2 nm. Quantum yield of green CdTe QDs-MSA (mercaptosuccinic acid)-A, yellow CdTe QDs-MSA-B, orange CdTe QDs-MSA-C and red CdTe QDs-MSA-D were 23.0%, 16.0%, 18.0% and 7.0%, respectively. Green, yellow, orange and red CdTe QDs were replaced every day and exposed to daily UV radiation for 12 h for seven consecutive days in summer with UV index signal integration ranging from 1894 to 2970. The rising dose of UV radiation led to the release of cadmium ions and the change in the size of individual QDs. The shifts were evident in absorption signals (shifts of the absorbance maxima of individual CdTe QDs-MSA were in the range of 6-79 nm), sulfhydryl (SH)-group signals (after UV exposure, the largest changes in the differential signal of the SH groups were observed in the orange, green, and yellow QDs, while in red QDs, there were almost no changes), fluorescence, and electrochemical signals. Yellow, orange and green QDs showed a stronger response to UV radiation than red ones.

4.
Nanomaterials (Basel) ; 9(11)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683686

ABSTRACT

AgNPs have attracted considerable attention in many applications including industrial use, and their antibacterial properties have been widely investigated. Due to the green synthesis process employed, the nanoparticle surface can be coated with molecules with biologically important characteristics. It has been reported that increased use of nanoparticles elevates the risk of their release into the environment. However, little is known about the behaviour of AgNPs in the eco-environment. In this study, the effect of green synthesized AgNPs on germinated plants of maize was examined. The effects on germination, basic growth and physiological parameters of the plants were monitored. Moreover, the effect of AgNPs was compared with that of Ag(I) ions in the form of AgNO3 solution. It was found that the growth inhibition of the above-ground parts of plants was about 40%, and AgNPs exhibited a significant effect on photosynthetic pigments. Significant differences in the following parameters were observed: weights of the caryopses and fresh weight (FW) of primary roots after 96 h of exposure to Ag(I) ions and AgNPs compared to the control and between Ag compounds. In addition, the coefficient of velocity of germination (CVG) between the control and the AgNPs varied and that between the Ag(I) ions and AgNPs was also different. Phytotoxicity was proved in the following sequence: control < AgNPs < Ag(I) ions.

5.
Analyst ; 141(19): 5577-85, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27435634

ABSTRACT

In this study, the enhancement of electrochemical signals of Cr(iii) and Cr(vi) by using an activated glassy carbon electrode (GCE) measured by differential pulse voltammetry (DPV) is demonstrated. The activated GCE exhibited higher sensitivity for detection of Cr(iii) and Cr(vi) compared with the bare GCE. By using the activated GCE, the limit of detection decreased 15.3 times (from 0.230 to 0.015 µM) in the case of Cr(iii) determination and 75 times (from 9.000 to 0.120 µM) in the case of Cr(vi) determination. Moreover, a simultaneous speciation analysis of Cr(iii) and Cr(vi) using the activated GCE was presented. Scanning electron microscopy, elemental mapping, and electrochemical impedance spectroscopy were employed for investigation of the surface of the activated GCE. Finally, the influence of different ions (Na(+), K(+), NH4(+), SO4(2-), NO3(-), and Cl(-) in the form of Na2SO4, NaNO3, NH4Cl, and KCl salts) on the speciation signals of Cr(iii) and Cr(vi) in a mixture of the two Cr oxidation states was investigated.

6.
Analyst ; 141(9): 2665-75, 2016 04 25.
Article in English | MEDLINE | ID: mdl-26882954

ABSTRACT

In this study, enhancement of the electrochemical signals of etoposide (ETO) measured by differential pulse voltammetry (DPV) by modifying a glassy carbon electrode (GCE) with carbon quantum dots (CQDs) is demonstrated. In comparison with a bare GCE, the modified GCE exhibited a higher sensitivity towards electrochemical detection of ETO. The lowest limit of detection was observed to be 5 nM ETO. Furthermore, scanning electron microscopy (SEM), fluorescence microscopy (FM), and electrochemical impedance spectroscopy (EIS) were employed for the further study of the working electrode surface after the modification with CQDs. Finally, the GCE modified with CQDs under optimized conditions was used to analyse real samples of ETO in the prostate cancer cell line PC3. After different incubation times (1, 3, 6, 9, 12, 18 and 24 h), these samples were then prepared prior to electrochemical detection by the GCE modified with CQDs. High performance liquid chromatography with an electrochemical detection method was employed to verify the results from the GCE modified with CQDs.


Subject(s)
Carbon/chemistry , Electrochemistry/methods , Etoposide/analysis , Glass/chemistry , Quantum Dots/chemistry , Cell Line, Tumor , Electrochemistry/instrumentation , Electrodes , Etoposide/chemistry , Etoposide/pharmacology , Humans , Limit of Detection , Povidone/chemistry
7.
Electrophoresis ; 36(16): 1894-904, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26033737

ABSTRACT

A novel microfluidic label-free bead-based metallothionein immunosensors was designed. To the surface of superparamagnetic agarose beads coated with protein A, polyclonal chicken IgY specifically recognizing metallothionein (MT) were immobilized via rabbit IgG. The Brdicka reaction was used for metallothionein detection in a microfluidic printed 3D chip. The assembled chip consisted of a single copper wire coated with a thin layer of amalgam as working electrode. Optimization of MT detection using designed microfluidic chip was performed in stationary system as well as in the flow arrangement at various flow rates (0-1800 µL/min). In stationary arrangement it is possible to detect MT concentrations up to 30 ng/mL level, flow arrangement allows reliable detection of even lower concentration (12.5 ng/mL). The assembled miniature flow chip was subsequently tested for the detection of MT elevated levels (at approx. level 100 µg/mL) in samples of patients with cancer. The stability of constructed device for metallothionein detection in flow arrangement was found to be several days without any maintenance needed.


Subject(s)
Electrochemical Techniques/instrumentation , Immunomagnetic Separation/instrumentation , Metallothionein/blood , Animals , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/metabolism , Chickens , Electrochemical Techniques/methods , Electrodes , Equipment Design , Head and Neck Neoplasms/blood , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Immunoglobulins/chemistry , Immunoglobulins/metabolism , Immunomagnetic Separation/methods , Male , Middle Aged , Rabbits
8.
Methods Mol Biol ; 1274: 67-79, 2015.
Article in English | MEDLINE | ID: mdl-25673483

ABSTRACT

The emergence of drug-resistant bacteria and new or changing infectious pathogens is an important public health problem as well as a serious socioeconomic concern. Immunomagnetic separation-based methods create new possibilities for rapidly recognizing many of these pathogens. Nanomaterial-based techniques including fluorescent labeling by quantum dots as well as immunoextraction by magnetic particles are excellent tools for such purposes. Moreover, the combination with capillary electrophoresis in miniaturized microchip arrangement brings numerous benefits such as fast and rapid analysis, low sample consumption, very sensitive electrochemical and fluorescent detection, portable miniaturized instrumentation, and rapid and inexpensive device fabrication. Here the use of superparamagnetic particle-based fully automated instrumentation to isolate pathogen Staphylococcus aureus and its Zn(II)-containing proteins (Zn-proteins) is reported using a robotic pipetting system speeding up the sample preparation and enabling to analyze 48 real samples within 6 h. Cell lysis and Zn-protein extractions were obtained from a minimum of 100 cells with the sufficient yield for SDS-PAGE (several tens ng of proteins).


Subject(s)
Bacterial Proteins/isolation & purification , Electrophoresis, Capillary/methods , Electrophoresis, Microchip/methods , Immunomagnetic Separation/methods , Quantum Dots , Staphylococcus aureus/chemistry , Staphylococcus aureus/isolation & purification
9.
Sensors (Basel) ; 15(1): 592-610, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25558996

ABSTRACT

In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II), Cu(II) and Pb(II) ion quantification, while Zn(II) did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME) were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933).


Subject(s)
Electrochemistry/methods , Environment , Mercury/chemistry , Metals, Heavy/analysis , Neural Networks, Computer , Animals , Automation , Cadmium/blood , Calibration , Chickens , Copper/blood , Electrodes , Geologic Sediments/chemistry , Humans , Ions , Lead/blood , Metals, Heavy/blood , Regression Analysis , Robotics , Zinc/blood
10.
Int J Mol Sci ; 14(7): 13391-402, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23807501

ABSTRACT

Magnetic particle mediated transport in combination with nanomaterial based drug carrier has a great potential for targeted cancer therapy. In this study, doxorubicin encapsulation into the apoferritin and its conjugation with magnetic particles was investigated by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). The quantification of encapsulated doxorubicin was performed by fluorescence spectroscopy and compared to CE-LIF. Moreover, the significant enhancement of the doxorubicin signal was observed by addition of methanol into the sample solution.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Apoferritins/chemistry , Doxorubicin/chemistry , Drug Delivery Systems , Magnetic Fields , Nanoparticles/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...