Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 299: 134365, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35331749

ABSTRACT

In this study, the K2CO3 activation of bamboo was investigated in detail, and the structure and properties of the prepared activated carbons were tested for the feasibility of CO2 capture application and the potential for both ion and bacteria adsorption for use in the field of hazardous wastewater treatment. Activated carbons were produced with different activator ratios, from 0.5 to 6 according to the sample mass ratio. The ratio of H or O to C (H/C or O/C) increased with the increasing amount of K2CO3 added for the activation. The samples had a highly-porous microporous structure, in which the micropore volume was calculated to be 0.6 cm3 g-1 by the DR method of the CO2 adsorption isotherm at 298 K. The BET surface area and total pore volume estimated from the N2 adsorption isotherms at 77 K of the activated materials increased according to the increase of the K2CO3 impregnation ratio to a maximum value of 1802 m2 g-1 and 0.91 cm3 g-1, respectively. Moreover, the K2CO3-activated samples had a specific morphology, that is, macropores which are presumed to be derived from bubbles. The X-ray-CT images showed that the bubble-like structure is not only on the surface but also inside the samples. The results of gas adsorption methods, mercury porosimetry, and SEM showed the co-existence of micropores (<2 nm) and macropores (100-10,000 nm). The results highlighted the unique pore structure, that is, the coexistence of micropores and macropores that would contribute to forming solutions for carbon sequestration in the atmosphere and wastewater treatment.


Subject(s)
Charcoal , Water Purification , Adsorption , Carbon Dioxide/chemistry , Charcoal/chemistry , Porosity
2.
RSC Adv ; 11(16): 9682-9692, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-35423439

ABSTRACT

CO2 activation of the solid residue of bamboo after hydrothermal treatment, which is used for the production of xylo-oligosaccharide, was investigated in detail. The reference temperature for carbonization and CO2 activation was 800 °C. The activated carbon from a solid residue was demonstrated to have a higher potential for making EDLC electrodes than bamboo activated carbon thanks to its very low ash content (almost 0) and high porosity structure with a BET surface area up to ca. 2150 m2 g-1. The electrochemical performance of ELDC electrodes prepared from solid residue-derived activated carbon in 1 M H2SO4 aqueous solution was measured and well compared with carbon from bamboo. Through investigation, it is clear that the capacitance of the electrode made from the solid residue has a better capacity than that of raw bamboo.

3.
Vaccine ; 33(25): 2887-96, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-25944298

ABSTRACT

Most individuals infected with human immunodeficiency virus type 1 (HIV-1) generate a CD4(+) T-cell response that is dominated by a few epitopes. Immunodominance may be counterproductive because a broad CD4(+) T-cell response is associated with reduced viral load. Previous studies indicated that antigen three-dimensional structure controls antigen processing and presentation and therefore CD4(+) T-cell epitope dominance. Dominant epitopes occur adjacent to the V1-V2, V3, and V4 loops because proteolytic antigen processing in the loops promotes presentation of adjacent sequences. In this study, three gp120 (strain JR-FL) variants were constructed, in which deletions of single outer-domain disulfide bonds were expected to introduce local conformational flexibility and promote presentation of additional CD4(+) T-cell epitopes. Following mucosal immunization of C57BL/6 mice with wild-type or variant gp120 lacking the V3-flanking disulfide bond, the typical pattern of dominant epitopes was observed, suggesting that the disulfide bond posed no barrier to antigen presentation. In mice that lacked gamma interferon-inducible lysosomal thioreductase (GILT), proliferative responses to the typically dominant epitopes of gp120 were selectively depressed, and the dominance pattern was rearranged. Deletion of the V3-flanking disulfide bond or one of the V4-flanking disulfide bonds partially restored highly proliferative responses to the typically dominant epitopes. These results reveal an acute dependence of dominant CD4(+) T-cell responses on the native gp120 conformation.


Subject(s)
Disulfides/chemistry , Epitopes, T-Lymphocyte/chemistry , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , T-Lymphocytes, Helper-Inducer/immunology , AIDS Vaccines/immunology , Amino Acid Sequence , Animals , Antigen Presentation , Epitope Mapping , Epitopes, T-Lymphocyte/immunology , HIV Envelope Protein gp120/administration & dosage , Humans , Immunity, Cellular , Immunization , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/immunology , Mice, Inbred C57BL , Oxidoreductases/deficiency , Oxidoreductases Acting on Sulfur Group Donors , Protein Conformation , Protein Denaturation
4.
J Virol ; 88(17): 9605-15, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24920818

ABSTRACT

UNLABELLED: Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-terminal flanks of flexible segments that are likely to be proteolytic cleavage sites. In this study, the influence of gp120 conformation on the dominance pattern in gp120 from HIV strain 89.6 was examined in CBA mice, whose MHC class II protein has one of the most well defined peptide-binding preferences. Only one of six dominant epitopes contained the most conserved element of the I-Ak binding motif, an aspartic acid. Destabilization of the gp120 conformation by deletion of single disulfide bonds preferentially enhanced responses to the cryptic I-Ak motif-containing sequences, as reported by T-cell proliferation or cytokine secretion. Conversely, inclusion of CpG in the adjuvant with gp120 enhanced responses to the dominant CD4+ T-cell epitopes. The gp120 destabilization affected secretion of some cytokines more than others, suggesting that antigen conformation could modulate T-cell functions through mechanisms of antigen processing. IMPORTANCE: CD4+ helper T cells play an essential role in protection against HIV and other pathogens. Thus, the sites of helper T-cell recognition, the dominant epitopes, are targets for vaccine design; and the corresponding T cells may provide markers for monitoring infection and immunity. However, T-cell epitopes are difficult to identify and predict. It is also unclear whether CD4+ T cells specific for one epitope are more protective than T cells specific for other epitopes. This work shows that the three-dimensional (3D) structure of an HIV protein partially determines which epitopes are dominant, most likely by controlling the breakdown of HIV into peptides. Moreover, some types of signals from CD4+ T cells are affected by the HIV protein 3D structure; and thus the protectiveness of a particular peptide vaccine could be related to its location in the 3D structure.


Subject(s)
Epitopes/chemistry , Epitopes/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , Histocompatibility Antigens Class II/metabolism , Animals , Epitopes/metabolism , Female , HIV Envelope Protein gp120/metabolism , Mice, Inbred CBA , Protein Binding , Protein Conformation , Protein Stability
5.
J Clin Invest ; 122(7): 2369-83, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22684105

ABSTRACT

Natural killer (NK) cells are primary effectors of innate immunity directed against transformed tumor cells. In response, tumor cells have developed mechanisms to evade NK cell-mediated lysis through molecular mechanisms that are not well understood. In the present study, we used a lentiviral shRNA library targeting more than 1,000 human genes to identify 83 genes that promote target cell resistance to human NK cell-mediated killing. Many of the genes identified in this genetic screen belong to common signaling pathways; however, none of them have previously been known to modulate susceptibility of human tumor cells to immunologic destruction. Gene silencing of two members of the JAK family (JAK1 and JAK2) increased the susceptibility of a variety of tumor cell types to NK-mediated lysis and induced increased secretion of IFN-γ by NK cells. Treatment of tumor cells with JAK inhibitors also increased susceptibility to NK cell activity. These findings may have important clinical implications and suggest that small molecule inhibitors of tyrosine kinases being developed as therapeutic antitumor agents may also have significant immunologic effects in vivo.


Subject(s)
Janus Kinase 1/genetics , Janus Kinase 2/genetics , Killer Cells, Natural/immunology , Tumor Escape/genetics , Apoptosis , Cell Line, Tumor , Coculture Techniques , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Interferon-gamma/metabolism , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Janus Kinase 3/genetics , Janus Kinase 3/metabolism , Killer Cells, Natural/metabolism , Oligonucleotide Array Sequence Analysis , RNA Interference , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Signal Transduction , TYK2 Kinase/genetics , TYK2 Kinase/metabolism , Tyrphostins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...