Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 137(3): 179-186, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38238241

ABSTRACT

C-phycocyanin (CPC), which contains open-chain tetrapyrroles, is a major light-harvesting red-fluorescent protein with an important role in aquatic photosynthesis. Recently, we reported a non-conventional CPC from Thermoleptolyngbya sp. O-77 (CPCO77) that contains two different structures, i.e., a hexameric structure and a non-conventional octameric structure. However, the assembly and disassembly mechanisms of the non-conventional octameric form of CPC remain unclear. To understand this assembly mechanism, we performed an in vitro experiment to study the disassembly and reassembly behaviors of CPC using isolated CPC subunits. The dissociation of the CPCO77 subunit was performed using a Phenyl-Sepharose column in 20 mM potassium phosphate buffer (pH 6.0) containing 7.0 M urea. For the first time, crystals of isolated CPC subunits were obtained and analyzed after separation. After the removal of urea from the purified α and ß subunits, we performed an in vitro reassembly experiment for CPC and analyzed the reconstructed CPC using spectrophotometric and X-ray crystal structure analyses. The crystal structure of the reassembled CPC was nearly identical to that of the original CPCO77. The findings of this study indicate that the octameric CPCO77 is a naturally occurring form in the thermophilic cyanobacterium Thermoleptolyngbya sp. O-77.


Subject(s)
Photosynthesis , Phycocyanin , Potassium , Red Fluorescent Protein , Urea
2.
J Biosci Bioeng ; 136(3): 182-189, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37400329

ABSTRACT

Biocatalytic CO2 reduction into formate is a crucial strategy for developing clean energy because formate is considered as one of the promising hydrogen storage materials for achieving net-zero carbon emissions. Here, we developed an efficient biocatalytic system to produce formate selectively by coupling two enzymatic activities of H2 oxidation and CO2 reduction using encapsulated bacterial cells of Citrobacter sp. S-77. The encapsulated whole-cell catalyst was made by living cells depositing into polyvinyl alcohol and gellan gum cross-linked by calcium ions to form hydrogel beads. Formate production using encapsulated cells was carried out under the resting state conditions in the gas mixture of H2/CO2 (70:30, v/v%). The whole-cell biocatalyst showed highly efficient and selective catalytic production of formate, reaching the specific rate of formate production of 110 mmol L-1· gprotein-1·h-1 at 30 °C, pH 7.0, and 0.1 MPa. The encapsulated cells can be reused at least 8 times while keeping their high catalytic activities for formate production under mild reaction conditions.


Subject(s)
Carbon Dioxide , Hydrogen , Biocatalysis , Catalysis , Formates
SELECTION OF CITATIONS
SEARCH DETAIL
...