Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Neurooncol ; 142(3): 423-434, 2019 May.
Article in English | MEDLINE | ID: mdl-30838489

ABSTRACT

PURPOSE: Both IDH1-mutated and wild-type gliomas abundantly display aberrant CpG island hypermethylation. However, the potential role of hypermethylation in promoting gliomas, especially the most aggressive form, glioblastoma (GBM), remains poorly understood. METHODS: We analyzed RRBS-generated methylation profiles for 11 IDH1WT gliomas (including 7 GBMs), 24 IDH1MUT gliomas (including 6 GBMs), and 5 normal brain samples and employed TCGA GBM methylation profiles as a validation set. Upon classification of differentially methylated CpG islands by IDH1 status, we used integrated analysis of methylation and gene expression to identify SPINT2 as a top cancer related gene. To explore functional consequences of SPINT2 methylation in GBM, we validated SPINT2 methylation status using targeted bisulfite sequencing in a large cohort of GBM samples. We assessed DNA methylation-mediated SPINT2 gene regulation using 5-aza-2'-deoxycytidine treatment, DNMT1 knockdown and luciferase reporter assays. We conducted functional analyses of SPINT2 in GBM cell lines in vitro and in vivo. RESULTS: We identified SPINT2 as a candidate tumor-suppressor gene within a group of CpG islands (designated GT-CMG) that are hypermethylated in both IDH1MUT and IDH1WT gliomas but not in normal brain. We established that SPINT2 downregulation results from promoter hypermethylation, and that restoration of SPINT2 expression reduces c-Met activation and tumorigenic properties of GBM cells. CONCLUSIONS: We defined a previously under-recognized group of coordinately methylated CpG islands common to both IDH1WT and IDH1MUT gliomas (GT-CMG). Within GT-CMG, we identified SPINT2 as a top cancer-related candidate and demonstrated that SPINT2 suppressed GBM via down-regulation of c-Met activation.


Subject(s)
DNA Methylation , Gene Expression Regulation, Neoplastic , Glioblastoma/prevention & control , Isocitrate Dehydrogenase/genetics , Membrane Glycoproteins/genetics , Mutation , Proto-Oncogene Proteins c-met/metabolism , Animals , Apoptosis , Cell Proliferation , CpG Islands , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Promoter Regions, Genetic , Proto-Oncogene Proteins c-met/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Neurooncol Pract ; 5(4): 223-226, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30402261

ABSTRACT

Glioblastoma is the most common and lethal form of primary brain cancer. In the recurrent setting, bevacizumab is a common choice for salvage therapy. Loss of vision in patients initially treated with radiation at the time of diagnosis and later treated with bevacizumab at time of recurrence has been reported, and presumed to be a treatment-related optic neuropathy. Strikingly, only 1 case report described a postmortem biopsy to rule out tumor involvement of the optic tracts. We report the first case of recurrent glioblastoma infiltrating the prechiasmatic and chiasmatic optic nerve, which at the time of vision loss was presumed to be secondary to bevacizumab. It is noteworthy that the MRI findings in the previously reported bevacizumab/radiation-induced optic neuropathy cases (without pathology follow-up) are comparable to our patient.

3.
Front Oncol ; 8: 451, 2018.
Article in English | MEDLINE | ID: mdl-30374424

ABSTRACT

Tumor Treating Field (TTFields) therapy has demonstrated efficacy in a Phase 3 study of newly diagnosed glioblastoma (GB) following radiation (RT) and temozolomide (TMZ). We report the appearance of an isolated satellite anterior temporal lobe lesion, 2 months post primary RT/TMZ directed at the primary GB (MGMT methylated) parietal lobe lesion and one adjuvant cycle of TMZ and TTFields. The mean RT dose delivered to the temporal lobe lesion was negligible, i.e., 4.53 ± 0.95 Gy. Mapping of the generated TTFields demonstrated that both lesions were encompassed by a field intensity in a therapeutic range. The temporal lobe lesion remained under the control of TTFields up to 12 months, at which point progression on a T1 contrast MRI resulted in surgery and a definitive diagnosis of GB without MGMT methylation. The primary parietal lobe at this time was in remission. Molecular sequencing on the GB tissue from multiple time points demonstrates clonal evolution of the cancer over time and in response to treatment.

4.
Int J Radiat Oncol Biol Phys ; 100(5): 1195-1203, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29722661

ABSTRACT

PURPOSE: To assess the safety and efficacy of upfront treatment using bortezomib combined with standard radiation therapy (RT) and temozolomide (TMZ), followed by adjuvant bortezomib and TMZ for ≤24 cycles, in patients with newly diagnosed glioblastoma multiforme (GBM). METHODS AND MATERIALS: Twenty-four patients with newly diagnosed GBM were enrolled. The patients received standard external beam regional RT with concurrent TMZ beginning 3 to 6 weeks after surgery, followed by adjuvant TMZ and bortezomib for ≤24 cycles or until tumor progression. During RT, bortezomib was given at 1.3 mg/m2 on days 1, 4, 8, 11, 29, 32, 36, and 39. After RT, bortezomib was given at 1.3 mg/m2 on days 1, 4, 8, and 11 every 4 weeks. RESULTS: No unexpected adverse events occurred from the addition of bortezomib. The efficacy analysis showed a median progression-free survival (PFS) of 6.2 months (95% confidence interval [CI] 3.7-8.8), with promising PFS rates at ≥18 months compared with historical norms (25.0% at 18 and 24 months; 16.7% at 30 months). In terms of overall survival (OS), the median OS was 19.1 months (95% CI 6.7-31.4), with improved OS rates at ≥12 months (87.5% at 12, 50.0% at 24, 34.1% at 36-60 months) compared with the historical norms. The median PFS was 24.7 months (95% CI 8.5-41.0) in 10 MGMT methylated and 5.1 months (95% CI 3.9-6.2) in 13 unmethylated patients. The estimated median OS was 61 months (95% CI upper bound not reached) in the methylated and 16.4 months (95% CI 11.8-21.0) in the unmethylated patients. CONCLUSIONS: The addition of bortezomib to current standard radiochemotherapy in newly diagnosed GBM patients was tolerable. The PFS and OS rates appeared promising, with more benefit to MGMT methylated patients. Further clinical investigation is warranted in a larger cohort of patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/therapy , Chemoradiotherapy/methods , Glioblastoma/therapy , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bortezomib/administration & dosage , Bortezomib/adverse effects , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Chemoradiotherapy/adverse effects , Female , Glioblastoma/genetics , Glioblastoma/mortality , Humans , Maintenance Chemotherapy , Male , Middle Aged , Neoplasm Recurrence, Local/therapy , Progression-Free Survival , Temozolomide/administration & dosage , Temozolomide/adverse effects
5.
J Neurooncol ; 139(2): 399-409, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29679199

ABSTRACT

INTRODUCTION: To report the potential value of pre-operative 18F-FDOPA PET and anatomic MRI in diagnosis and prognosis of glioma patients. METHODS: Forty-five patients with a pathological diagnosis of glioma with pre-operative 18F-FDOPA PET and anatomic MRI were retrospectively examined. The volume of contrast enhancement and T2 hyperintensity on MRI images along with the ratio of maximum 18F-FDOPA SUV in tumor to normal tissue (T/N SUVmax) were measured and used to predict tumor grade, molecular status, and overall survival (OS). RESULTS: A significant correlation was observed between WHO grade and: the volume of contrast enhancement (r = 0.67), volume of T2 hyperintensity (r = 0.42), and 18F-FDOPA uptake (r = 0.60) (P < 0.01 for each correlation). The volume of contrast enhancement and 18F-FDOPA T/N SUVmax were significantly higher in glioblastoma (WHO IV) compared with lower grade gliomas (WHO I-III), as well as for high-grade gliomas (WHO III-IV) compared with low-grade gliomas (WHO I-II). Receiver-operator characteristic (ROC) analyses confirmed the volume of contrast enhancement and 18F-FDOPA T/N SUVmax could each differentiate patient groups. No significant differences in 18F-FDOPA uptake were observed by IDH or MGMT status. Multivariable Cox regression suggested age (HR 1.16, P = 0.0001) and continuous measures of 18F-FDOPA PET T/N SUVmax (HR 4.43, P = 0.016) were significant prognostic factors for OS in WHO I-IV gliomas. CONCLUSIONS: Current findings suggest a potential role for the use of pre-operative 18F-FDOPA PET in suspected glioma. Increased 18F-FDOPA uptake may not only predict higher glioma grade, but also worse OS.


Subject(s)
Brain Neoplasms/diagnostic imaging , Dihydroxyphenylalanine/analogs & derivatives , Glioma/diagnostic imaging , Magnetic Resonance Imaging , Positron-Emission Tomography , Radiopharmaceuticals , Adolescent , Adult , Aged , Biomarkers, Tumor/metabolism , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Contrast Media , Cross-Sectional Studies , Female , Glioma/metabolism , Glioma/mortality , Glioma/pathology , Humans , Male , Middle Aged , Preoperative Period , Prognosis , Retrospective Studies , Survival Analysis , Young Adult
6.
Mol Cancer Res ; 16(6): 947-960, 2018 06.
Article in English | MEDLINE | ID: mdl-29545476

ABSTRACT

Mutant isocitrate dehydrogenase (IDH) 1/2 converts α-ketoglutarate (α-KG) to D-2 hydroxyglutarate (D-2-HG), a putative oncometabolite that can inhibit α-KG-dependent enzymes, including ten-eleven translocation methylcytosine dioxygenase (TET) DNA demethylases. We recently established that miRNAs are components of the IDH1 mutant-associated glioma CpG island methylator phenotype (G-CIMP) and specifically identified MIR148A as a tumor-suppressive miRNA within G-CIMP. However, the precise mechanism by which mutant IDH induces hypermethylation of MIR148A and other G-CIMP promoters remains to be elucidated. In this study, we demonstrate that treatment with exogenous D-2-HG induces MIR148A promoter methylation and transcriptional silencing in human embryonic kidney 293T (293T) cells and primary normal human astrocytes. Conversely, we show that the development of MIR148A promoter methylation in mutant IDH1-overexpressing 293T cells is abrogated via treatment with C227, an inhibitor of mutant IDH1 generation of D-2-HG. Using dot blot assays for global assessment of 5-hydroxymethylcytosine (5-hmC), we show that D-2-HG treatment reduces 5-hmC levels, whereas C227 treatment increases 5-hmC levels, strongly suggesting TET inhibition by D-2-HG. Moreover, we show that withdrawal of D-2-HG treatment reverses methylation with an associated increase in MIR148A transcript levels and transient generation of 5-hmC. We also demonstrate that RNA polymerase II binds endogenously to the predicted promoter region of MIR148A, validating the hypothesis that its transcription is driven by an independent promoter.Implications: Establishment of D-2-HG as a necessary and sufficient intermediate by which mutant IDH1 induces CpG island methylation of MIR148A will help with understanding the efficacy of selective mutant IDH1 inhibitors in the clinic. Mol Cancer Res; 16(6); 947-60. ©2018 AACR.


Subject(s)
DNA Methylation/genetics , Glutarates/metabolism , Isocitrate Dehydrogenase/metabolism , MicroRNAs/metabolism , Humans , Mutation
7.
Neuro Oncol ; 19(3): 394-404, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27571882

ABSTRACT

Background: Promoter mutation in the human telomerase reverse transcriptase gene (hTERT) occurs in ~75% of primary glioblastoma (GBM). Although the mutation appears to upregulate telomerase expression and contributes to the maintenance of telomere length, its clinical significance remains unclear. Methods: We performed hTERT promoter genotyping on 303 isocitrate dehydrogenase 1 wild-type GBM tumors treated with standard chemoradiotherapy. We also stratified 190 GBM patients from the database of The Cancer Genome Atlas (TCGA) by hTERT gene expression. We analyzed overall and progression-free survival by Kaplan-Meier and Cox regression. Results: We detected hTERT promoter mutation in 75% of the patients. When included as the only biomarker, hTERT mutation was not prognostic in our patient cohort by Cox regression analysis. However, when hTERT and O6-DNA methylguanine-methyltransferase (MGMT) were included together, we observed an interaction between these 2 factors. To further investigate this interaction, we performed pairwise comparison of the 4 patient subcohorts grouped by hTERT-MGMT status (MUT-M, WT-M, MUT-U, and WT-U). MGMT methylated patients showed improved survival only in the presence of hTERT promoter mutation: MUT-M versus MUT-U (overall survival of 28.3 vs 15.9 mos, log-rank P < .0001 and progression-free survival of 15.4 vs 7.86 mo, log-rank P < .0001). These results were confirmed by Cox analyses. Analogously, the cohort from TCGA demonstrated survival benefit of MGMT promoter methylation only in patients with high hTERT expression. In addition, hTERT mutation was negatively prognostic in our MGMT unmethylated patients, while the analogous association with high expression was not observed in the cohort from TCGA. Conclusion: The prognostic influence of MGMT promoter methylation depends on hTERT promoter mutation. This interaction warrants further mechanistic investigation.


Subject(s)
Chemoradiotherapy/mortality , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioblastoma/mortality , Isocitrate Dehydrogenase/genetics , Mutation/genetics , Promoter Regions, Genetic/genetics , Telomerase/genetics , Tumor Suppressor Proteins/genetics , Aged , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Female , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/therapy , Prognosis , Survival Rate
8.
Cancer ; 122(11): 1718-27, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26998740

ABSTRACT

BACKGROUND: Little is known about the natural growth characteristics of untreated glioblastoma before surgical or therapeutic intervention, because patients are rapidly treated after preliminary radiographic diagnosis. Understanding the growth characteristics of uninhibited human glioblastoma may be useful for characterizing changes in response to therapy. Thus, the objective of the current study was to explore tumor growth dynamics in a cohort of patients with untreated glioblastoma before surgical or therapeutic intervention. METHODS: Ninety-five patients with glioblastoma who had measurable enhancing disease on >2 magnetic resonance imaging scans before surgery were identified. Tumor growth rates were quantified in 4 different ways (the percentage change per day, the absolute rate of change per day, the estimated volumetric doubling time, and the radial expansion rate) using 3 different approaches (bidirectional product, enhancing disease, and total lesion volume). RESULTS: The median volumetric doubling time was 21.1 days, the percentage change in tumor volume was 2.1% per day, and the rate of change in total lesion volume was 0.18 cc per day. The length of follow-up between magnetic resonance imaging examinations should be >28 days to detect progressive disease with high specificity. Small initial tumor sizes (<3 cm in greatest dimension) are biased toward a large percentage change at follow-up. CONCLUSIONS: Presurgical, treatment-naive glioblastoma growth dynamics can be estimated in a variety of ways with similar results. The percentage changes in tumor size and volume depend on baseline tumor size and the time interval between scans. Cancer 2016;122:1718-27. © 2016 American Cancer Society.


Subject(s)
Brain Neoplasms/diagnostic imaging , Contrast Media , Glioblastoma/diagnostic imaging , Magnetic Resonance Imaging/methods , Tumor Burden/physiology , Adult , Aged , Aged, 80 and over , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Female , Follow-Up Studies , Glioblastoma/pathology , Glioblastoma/therapy , Growth , Humans , Male , Middle Aged , Preoperative Period , Time Factors , Young Adult
9.
Neuro Oncol ; 17(12): 1589-98, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25910840

ABSTRACT

BACKGROUND: Promoter methylation of O(6)-methylguanine-DNA methyltransferase (MGMT) is an important predictive biomarker in glioblastoma. The T variant of the MGMT promoter-enhancer single nucleotide polymorphism (SNP; rs16906252) has been associated with the presence of MGMT promoter methylation in other cancers. We examined the association of the T allele of rs16906252 with glioblastoma development, tumor MGMT methylation, MGMT protein expression, and survival outcomes. METHODS: Two independent temozolomide-treated glioblastoma cohorts-one Australian (Australian Genomics and Clinical Outcomes of Glioma, n = 163) and the other American (University of California Los Angeles/Kaiser Permanente Los Angeles, n = 159)-were studied. Allelic bisulphite sequencing was used to determine if methylation was specific to the T allele. Additionally, we compared the incidence of the T allele between glioblastoma cases and matched controls to assess whether it was a risk factor for developing MGMT methylated glioblastoma. RESULTS: Carriage of the T allele of the rs16906252 SNP was associated with both MGMT methylation and low MGMT protein expression and predicted significantly longer survival in temozolomide-treated patients with both MGMT methylated and nonmethylated glioblastoma. Methylation was linked to the T allele, inferring that the T variant plays a key role in the acquisition of MGMT methylation. Carriage of the T allele was associated with a significantly elevated risk of developing glioblastoma (adjusted odds ratio, 1.96; P = .013), increasing further when glioblastoma was classified by the presence of MGMT methylation (adjusted odds ratio, 2.86; P = .001). CONCLUSIONS: The T allele of the rs16906252 SNP is a key determinant in the acquisition of MGMT methylation in glioblastoma. Temozolomide-treated patients with the rs16906252 T genotype have better survival, irrespective of tumor methylation status.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Dacarbazine/analogs & derivatives , Glioblastoma/drug therapy , Glioblastoma/genetics , Polymorphism, Single Nucleotide , Tumor Suppressor Proteins/genetics , Adult , Aged , Aged, 80 and over , Alleles , Biomarkers/metabolism , Brain Neoplasms/metabolism , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Dacarbazine/therapeutic use , Female , Genotype , Glioblastoma/metabolism , Humans , Kaplan-Meier Estimate , Male , Methylation , Middle Aged , Promoter Regions, Genetic , Risk Factors , Temozolomide , Treatment Outcome , Tumor Suppressor Proteins/metabolism
10.
Clin Cancer Res ; 21(19): 4373-83, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-25901082

ABSTRACT

PURPOSE: Evaluation of nonenhancing tumor (NET) burden is an important yet challenging part of brain tumor response assessment. This study focuses on using dual-echo turbo spin-echo MRI as a means of quickly estimating tissue T2, which can be used to objectively define NET burden. EXPERIMENTAL DESIGN: A series of experiments were performed to establish the use of T2 maps for defining NET burden. First, variation in T2 was determined using the American College of Radiology (ACR) water phantoms in 16 scanners evaluated over 3 years. Next, the sensitivity and specificity of T2 maps for delineating NET from other tissues were examined. Then, T2-defined NET was used to predict survival in separate subsets of patients with glioblastoma treated with radiotherapy, concurrent radiation, and chemotherapy, or bevacizumab at recurrence. RESULTS: Variability in T2 in the ACR phantom was 3% to 5%. In training data, ROC analysis suggested that 125 ms < T2 < 250 ms could delineate NET with a sensitivity of >90% and specificity of >65%. Using this criterion, NET burden after completion of radiotherapy alone, or concurrent radiotherapy, and chemotherapy was shown to be predictive of survival (Cox, P < 0.05), and the change in NET volume before and after bevacizumab therapy in recurrent glioblastoma was also a predictive of survival (P < 0.05). CONCLUSIONS: T2 maps using dual-echo data are feasible, stable, and can be used to objectively define NET burden for use in brain tumor characterization, prognosis, and response assessment. The use of effective T2 maps for defining NET burden should be validated in a randomized, clinical trial.


Subject(s)
Brain Neoplasms/diagnosis , Echo-Planar Imaging , Glioma/diagnosis , Adult , Aged , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Chemoradiotherapy , Echo-Planar Imaging/methods , Echo-Planar Imaging/standards , Female , Glioma/mortality , Glioma/pathology , Glioma/therapy , Humans , Kaplan-Meier Estimate , Magnetic Resonance Imaging , Male , Middle Aged , Proportional Hazards Models , ROC Curve , Retrospective Studies , Sensitivity and Specificity , Treatment Outcome , Tumor Burden , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...