Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Immunity ; 46(1): 51-64, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28099864

ABSTRACT

Despite the importance of programmed cell death-1 (PD-1) in inhibiting T cell effector activity, the mechanisms regulating its expression remain poorly defined. We found that the chromatin organizer special AT-rich sequence-binding protein-1 (Satb1) restrains PD-1 expression induced upon T cell activation by recruiting a nucleosome remodeling deacetylase (NuRD) complex to Pdcd1 regulatory regions. Satb1 deficienct T cells exhibited a 40-fold increase in PD-1 expression. Tumor-derived transforming growth factor ß (Tgf-ß) decreased Satb1 expression through binding of Smad proteins to the Satb1 promoter. Smad proteins also competed with the Satb1-NuRD complex for binding to Pdcd1 enhancers, releasing Pdcd1 expression from Satb1-mediated repression, Satb1-deficient tumor-reactive T cells lost effector activity more rapidly than wild-type lymphocytes at tumor beds expressing PD-1 ligand (CD274), and these differences were abrogated by sustained CD274 blockade. Our findings suggest that Satb1 functions to prevent premature T cell exhaustion by regulating Pdcd1 expression upon T cell activation. Dysregulation of this pathway in tumor-infiltrating T cells results in diminished anti-tumor immunity.


Subject(s)
Epigenetic Repression/immunology , Gene Expression Regulation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Matrix Attachment Region Binding Proteins/biosynthesis , Programmed Cell Death 1 Receptor/biosynthesis , Animals , Enzyme-Linked Immunospot Assay , Humans , Immunoprecipitation , Lymphocyte Activation/immunology , Matrix Attachment Region Binding Proteins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/immunology , Neoplasms/metabolism
2.
Clin Cancer Res ; 23(2): 441-453, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27435394

ABSTRACT

PURPOSE: To define the safety and effectiveness of T cells redirected against follicle-stimulating hormone receptor (FSHR)-expressing ovarian cancer cells. EXPERIMENTAL DESIGN: FSHR expression was determined by Western blotting, immunohistochemistry, and qPCR in 77 human ovarian cancer specimens from 6 different histologic subtypes and 20 human healthy tissues. The effectiveness of human T cells targeted with full-length FSH in vivo was determined against a panel of patient-derived xenografts. Safety and effectiveness were confirmed in immunocompetent tumor-bearing mice, using constructs targeting murine FSHR and syngeneic T cells. RESULTS: FSHR is expressed in gynecologic malignancies of different histologic types but not in nonovarian healthy tissues. Accordingly, T cells expressing full-length FSHR-redirected chimeric receptors mediate significant therapeutic effects (including tumor rejection) against a panel of patient-derived tumors in vivo In immunocompetent mice growing syngeneic, orthotopic, and aggressive ovarian tumors, fully murine FSHR-targeted T cells also increased survival without any measurable toxicity. Notably, chimeric receptors enhanced the ability of endogenous tumor-reactive T cells to abrogate malignant progression upon adoptive transfer into naïve recipients subsequently challenged with the same tumor. Interestingly, FSHR-targeted T cells persisted as memory lymphocytes without noticeable PD-1-dependent exhaustion during end-stage disease, in the absence of tumor cell immunoediting. However, exosomes in advanced tumor ascites diverted the effector activity of this and other chimeric receptor-transduced T cells away from targeted tumor cells. CONCLUSIONS: T cells redirected against FSHR+ tumor cells with full-length FSH represent a promising therapeutic alternative against a broad range of ovarian malignancies, with negligible toxicity even in the presence of cognate targets in tumor-free ovaries. Clin Cancer Res; 23(2); 441-53. ©2016 AACR.


Subject(s)
Immunotherapy , Ovarian Neoplasms/therapy , Receptors, FSH/immunology , T-Lymphocytes/immunology , Animals , Ascites/immunology , Ascites/pathology , Exosomes/immunology , Exosomes/pathology , Female , Gene Expression Regulation, Neoplastic/immunology , Humans , Immunohistochemistry , Mice , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, FSH/genetics , Xenograft Model Antitumor Assays
3.
Cancer Discov ; 7(1): 72-85, 2017 01.
Article in English | MEDLINE | ID: mdl-27694385

ABSTRACT

The role of estrogens in antitumor immunity remains poorly understood. Here, we show that estrogen signaling accelerates the progression of different estrogen-insensitive tumor models by contributing to deregulated myelopoiesis by both driving the mobilization of myeloid-derived suppressor cells (MDSC) and enhancing their intrinsic immunosuppressive activity in vivo Differences in tumor growth are dependent on blunted antitumor immunity and, correspondingly, disappear in immunodeficient hosts and upon MDSC depletion. Mechanistically, estrogen receptor alpha activates the STAT3 pathway in human and mouse bone marrow myeloid precursors by enhancing JAK2 and SRC activity. Therefore, estrogen signaling is a crucial mechanism underlying pathologic myelopoiesis in cancer. Our work suggests that new antiestrogen drugs that have no agonistic effects may have benefits in a wide range of cancers, independently of the expression of estrogen receptors in tumor cells, and may synergize with immunotherapies to significantly extend survival. SIGNIFICANCE: Ablating estrogenic activity delays malignant progression independently of the tumor cell responsiveness, owing to a decrease in the mobilization and immunosuppressive activity of MDSCs, which boosts T-cell-dependent antitumor immunity. Our results provide a mechanistic rationale to block estrogen signaling with newer antagonists to boost the effectiveness of anticancer immunotherapies. Cancer Discov; 7(1); 72-85. ©2016 AACR.See related commentary by Welte et al., p. 17This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Myeloid-Derived Suppressor Cells/immunology , Neoplasms/immunology , Animals , Cell Line, Tumor , Disease Progression , Female , Humans , Janus Kinase 2/metabolism , MCF-7 Cells , Mice , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/metabolism , Neoplasm Transplantation , Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , src-Family Kinases/metabolism
4.
Cancer Res ; 76(21): 6253-6265, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27803104

ABSTRACT

Targeted therapies elicit seemingly paradoxical and poorly understood effects on tumor immunity. Here, we show that the MEK inhibitor trametinib abrogates cytokine-driven expansion of monocytic myeloid-derived suppressor cells (mMDSC) from human or mouse myeloid progenitors. MEK inhibition also reduced the production of the mMDSC chemotactic factor osteopontin by tumor cells. Together, these effects reduced mMDSC accumulation in tumor-bearing hosts, limiting the outgrowth of KRas-driven breast tumors, even though trametinib largely failed to directly inhibit tumor cell proliferation. Accordingly, trametinib impeded tumor progression in vivo through a mechanism requiring CD8+ T cells, which was paradoxical given the drug's reported ability to inhibit effector lymphocytes. Confirming our observations, adoptive transfer of tumor-derived mMDSC reversed the ability of trametinib to control tumor growth. Overall, our work showed how the effects of trametinib on immune cells could partly explain its effectiveness, distinct from its activity on tumor cells themselves. More broadly, by providing a more incisive view into how MEK inhibitors may act against tumors, our findings expand their potential uses to generally block mMDSC expansion, which occurs widely in cancers to drive their growth and progression. Cancer Res; 76(21); 6253-65. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Mutation , Myelopoiesis/drug effects , Neoplasms/drug therapy , Proto-Oncogene Proteins p21(ras)/genetics , Pyridones/pharmacology , Pyrimidinones/pharmacology , T-Lymphocytes/physiology , Animals , Cell Line, Tumor , Female , Humans , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred C57BL , Myeloid Cells/drug effects , Myeloid Cells/physiology , Neoplasms/genetics , Neoplasms/physiopathology , Osteopontin/biosynthesis
5.
Cancer Res ; 76(9): 2561-72, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26980764

ABSTRACT

Many signal transduction inhibitors are being developed for cancer therapy target pathways that are also important for the proper function of antitumor lymphocytes, possibly weakening their therapeutic effects. Here we show that most inhibitors targeting multiple signaling pathways have especially strong negative effects on T-cell activation at their active doses on cancer cells. In particular, we found that recently approved MEK inhibitors displayed potent suppressive effects on T cells in vitro However, these effects could be attenuated by certain cytokines that can be administered to cancer patients. Among them, clinically available IL15 superagonists, which can activate PI3K selectively in T lymphocytes, synergized with MEK inhibitors in vivo to elicit potent and durable antitumor responses, including by a vaccine-like effect that generated resistance to tumor rechallenge. Our work identifies a clinically actionable approach to overcome the T-cell-suppressive effects of MEK inhibitors and illustrates how to reconcile the deficiencies of signal transduction inhibitors, which impede desired immunologic effects in vivo Cancer Res; 76(9); 2561-72. ©2016 AACR.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Lymphocyte Activation/drug effects , Neoplasms, Experimental/pathology , Proteins/pharmacology , Animals , Blotting, Western , Cell Line, Tumor , Flow Cytometry , High-Throughput Screening Assays , Humans , Interleukin-15 , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Kinase Inhibitors/pharmacology , Pyridones/pharmacology , Pyrimidinones/pharmacology , Recombinant Fusion Proteins , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
6.
Cell Rep ; 14(7): 1774-1786, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26876172

ABSTRACT

Special AT-rich sequence-binding protein 1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating major histocompatibility complex class II (MHC II) expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46(+) inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression.


Subject(s)
Dendritic Cells/immunology , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class II/immunology , Matrix Attachment Region Binding Proteins/immunology , Ovarian Neoplasms/immunology , Animals , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic , Dendritic Cells/pathology , Female , Galectin 1/genetics , Galectin 1/immunology , Histocompatibility Antigens Class II/genetics , Histones/genetics , Histones/immunology , Humans , Immune Tolerance , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Matrix Attachment Region Binding Proteins/antagonists & inhibitors , Matrix Attachment Region Binding Proteins/genetics , Mice , Mice, Knockout , Neoplasm Transplantation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Promoter Regions, Genetic , Protein Binding , RNA, Small Interfering/genetics , RNA, Small Interfering/immunology , Receptor, Notch1/genetics , Receptor, Notch1/immunology , Signal Transduction , Transcription Factors/genetics , Transcription Factors/immunology
7.
Cancer Cell ; 27(1): 27-40, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25533336

ABSTRACT

The dominant TLR5(R392X) polymorphism abrogates flagellin responses in >7% of humans. We report that TLR5-dependent commensal bacteria drive malignant progression at extramucosal locations by increasing systemic IL-6, which drives mobilization of myeloid-derived suppressor cells (MDSCs). Mechanistically, expanded granulocytic MDSCs cause γδ lymphocytes in TLR5-responsive tumors to secrete galectin-1, dampening antitumor immunity and accelerating malignant progression. In contrast, IL-17 is consistently upregulated in TLR5-unresponsive tumor-bearing mice but only accelerates malignant progression in IL-6-unresponsive tumors. Importantly, depletion of commensal bacteria abrogates TLR5-dependent differences in tumor growth. Contrasting differences in inflammatory cytokines and malignant evolution are recapitulated in TLR5-responsive/unresponsive ovarian and breast cancer patients. Therefore, inflammation, antitumor immunity, and the clinical outcome of cancer patients are influenced by a common TLR5 polymorphism.


Subject(s)
Interleukin-17/metabolism , Interleukin-6/metabolism , Microbiota , Neoplasms/immunology , Neoplasms/pathology , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Galectin 1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Sequence Data , Neoplasm Transplantation , Polymorphism, Single Nucleotide , Signal Transduction
8.
Immunity ; 41(3): 427-439, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25238097

ABSTRACT

Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-ß (TGF-ß), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-ß-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-ß signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation.


Subject(s)
Forkhead Transcription Factors/immunology , Neoplasms/immunology , Repressor Proteins/immunology , T-Lymphocytes, Cytotoxic/immunology , Transforming Growth Factor beta/immunology , Tumor Escape/immunology , Adoptive Transfer , Animals , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Female , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Gene Expression Regulation , Granzymes/biosynthesis , Interferon-gamma/biosynthesis , JNK Mitogen-Activated Protein Kinases/biosynthesis , JNK Mitogen-Activated Protein Kinases/genetics , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-myc/biosynthesis , Proto-Oncogene Proteins c-myc/genetics , Repressor Proteins/biosynthesis , Repressor Proteins/genetics , Signal Transduction/immunology , Smad2 Protein/immunology , Smad3 Protein/immunology , T-Lymphocytes, Cytotoxic/transplantation , Transcription, Genetic , Transcriptional Activation , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...