Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 12(5): e0253021, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34634941

ABSTRACT

Contact-dependent growth inhibition (CDI) systems enable the direct transfer of protein toxins between competing Gram-negative bacteria. CDI+ strains produce cell surface CdiA effector proteins that bind specific receptors on neighboring bacteria to initiate toxin delivery. Three classes of CdiA effectors that recognize different outer membrane protein receptors have been characterized in Escherichia coli to date. Here, we describe a fourth effector class that uses the lipopolysaccharide (LPS) core as a receptor to identify target bacteria. Selection for CDI-resistant target cells yielded waaF and waaP "deep-rough" mutants, which are unable to synthesize the full LPS core. The CDI resistance phenotypes of other waa mutants suggest that phosphorylated inner-core heptose residues form a critical CdiA recognition epitope. Class IV cdi loci also encode putative lysyl acyltransferases (CdiC) that are homologous to enzymes that lipidate repeats-in-toxin (RTX) cytolysins. We found that catalytically active CdiC is required for full target cell killing activity, and we provide evidence that the acyltransferase appends 3-hydroxydecanoate to a specific Lys residue within the CdiA receptor-binding domain. We propose that the lipid moiety inserts into the hydrophobic leaflet of lipid A to anchor CdiA interactions with the core oligosaccharide. Thus, LPS-binding CDI systems appear to have co-opted an RTX toxin-activating acyltransferase to increase the affinity of CdiA effectors for the target cell outer membrane. IMPORTANCE Contact-dependent growth inhibition (CDI) is a common form of interbacterial competition in which cells use CdiA effectors to deliver toxic proteins into their neighbors. CdiA recognizes target bacteria through specific receptor molecules on the cell surface. Here, we describe a new family of CdiA proteins that use lipopolysaccharide as a receptor to identify target bacteria. Target cell recognition is significantly enhanced by a unique fatty acid that is appended to the receptor-binding region of CdiA. We propose that the linked fatty acid inserts into the target cell outer membrane to stabilize the interaction. The CdiA receptor-binding region appears to mimic the biophysical properties of polymyxins, which are potent antibiotics used to disrupt the outer membranes of Gram-negative bacteria.


Subject(s)
Contact Inhibition/physiology , Escherichia coli Proteins/metabolism , Escherichia coli/growth & development , Escherichia coli/metabolism , Membrane Proteins/metabolism , Contact Inhibition/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Lipids , Membrane Proteins/genetics , Protein Binding
2.
Structure ; 27(11): 1660-1674.e5, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31515004

ABSTRACT

Contact-dependent growth inhibition (CDI) is a form of interbacterial competition mediated by CdiB-CdiA two-partner secretion systems. CdiA effector proteins carry polymorphic C-terminal toxin domains (CdiA-CT), which are neutralized by specific CdiI immunity proteins to prevent self-inhibition. Here, we present the crystal structures of CdiA-CT⋅CdiI complexes from Klebsiella pneumoniae 342 and Escherichia coli 3006. The toxins adopt related folds that resemble the ribonuclease domain of colicin D, and both are isoacceptor-specific tRNases that cleave the acceptor stem of deacylated tRNAGAUIle. Although the toxins are similar in structure and substrate specificity, CdiA-CTKp342 activity requires translation factors EF-Tu and EF-Ts, whereas CdiA-CTEC3006 is intrinsically active. Furthermore, the corresponding immunity proteins are unrelated in sequence and structure. CdiIKp342 forms a dimeric ß sandwich, whereas CdiIEC3006 is an α-solenoid monomer. Given that toxin-immunity genes co-evolve as linked pairs, these observations suggest that the similarities in toxin structure and activity reflect functional convergence.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Colicins/chemistry , Escherichia coli Proteins/chemistry , Evolution, Molecular , Membrane Proteins/chemistry , Ribonucleases/chemistry , Toxin-Antitoxin Systems , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Binding Sites , Colicins/genetics , Colicins/metabolism , Escherichia coli , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Binding , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Ribonucleases/genetics , Ribonucleases/metabolism
3.
Cell ; 175(4): 921-933.e14, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388452

ABSTRACT

Contact-dependent growth inhibition (CDI) entails receptor-mediated delivery of CdiA-derived toxins into Gram-negative target bacteria. Using electron cryotomography, we show that each CdiA effector protein forms a filament extending ∼33 nm from the cell surface. Remarkably, the extracellular filament represents only the N-terminal half of the effector. A programmed secretion arrest sequesters the C-terminal half of CdiA, including the toxin domain, in the periplasm prior to target-cell recognition. Upon binding receptor, CdiA secretion resumes, and the periplasmic FHA-2 domain is transferred to the target-cell outer membrane. The C-terminal toxin region of CdiA then penetrates into the target-cell periplasm, where it is cleaved for subsequent translocation into the cytoplasm. Our findings suggest that the FHA-2 domain assembles into a transmembrane conduit for toxin transport into the periplasm of target bacteria. We propose that receptor-triggered secretion ensures that FHA-2 export is closely coordinated with integration into the target-cell outer membrane. VIDEO ABSTRACT.


Subject(s)
Antibiosis , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism , Type V Secretion Systems/metabolism , Cell Surface Extensions/metabolism , Cell Surface Extensions/ultrastructure , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Membrane Proteins/chemistry , Protein Domains , Receptors, Cell Surface/metabolism
4.
Mol Microbiol ; 109(4): 509-527, 2018 08.
Article in English | MEDLINE | ID: mdl-29923643

ABSTRACT

Bacteria use several different secretion systems to deliver toxic EndoU ribonucleases into neighboring cells. Here, we present the first structure of a prokaryotic EndoU toxin in complex with its cognate immunity protein. The contact-dependent growth inhibition toxin CdiA-CTSTECO31 from Escherichia coli STEC_O31 adopts the eukaryotic EndoU fold and shares greatest structural homology with the nuclease domain of coronavirus Nsp15. The toxin contains a canonical His-His-Lys catalytic triad in the same arrangement as eukaryotic EndoU domains, but lacks the uridylate-specific ribonuclease activity that characterizes the superfamily. Comparative sequence analysis indicates that bacterial EndoU domains segregate into at least three major clades based on structural variations in the N-terminal subdomain. Representative EndoU nucleases from clades I and II degrade tRNA molecules with little specificity. In contrast, CdiA-CTSTECO31 and other clade III toxins are specific anticodon nucleases that cleave tRNAGlu between nucleotides C37 and m2 A38. These findings suggest that the EndoU fold is a versatile scaffold for the evolution of novel substrate specificities. Such functional plasticity may account for the widespread use of EndoU effectors by diverse inter-bacterial toxin delivery systems.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Escherichia coli/metabolism , Amino Acid Sequence , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , RNA, Transfer/metabolism , Sequence Analysis, Protein
5.
mBio ; 8(2)2017 03 28.
Article in English | MEDLINE | ID: mdl-28351921

ABSTRACT

Contact-dependent growth inhibition (CDI) systems encode CdiA effectors, which bind to specific receptors on neighboring bacteria and deliver C-terminal toxin domains to suppress target cell growth. Two classes of CdiA effectors that bind distinct cell surface receptors have been identified, but the molecular basis of receptor specificity is not understood. Alignment of BamA-specific CdiAEC93 from Escherichia coli EC93 and OmpC-specific CdiAEC536 from E. coli 536 suggests that the receptor-binding domain resides within a central region that varies between the two effectors. In support of this hypothesis, we find that CdiAEC93 fragments containing residues Arg1358 to Phe1646 bind specifically to purified BamA. Moreover, chimeric CdiAEC93 that carries the corresponding sequence from CdiAEC536 is endowed with OmpC-binding activity, demonstrating that this region dictates receptor specificity. A survey of E. coli CdiA proteins reveals two additional effector classes, which presumably recognize distinct receptors. Using a genetic approach, we identify the outer membrane nucleoside transporter Tsx as the receptor for a third class of CdiA effectors. Thus, CDI systems exploit multiple outer membrane proteins to identify and engage target cells. These results underscore the modularity of CdiA proteins and suggest that novel effectors can be constructed through genetic recombination to interchange different receptor-binding domains and toxic payloads.IMPORTANCE CdiB/CdiA two-partner secretion proteins mediate interbacterial competition through the delivery of polymorphic toxin domains. This process, known as contact-dependent growth inhibition (CDI), requires stable interactions between the CdiA effector protein and specific receptors on the surface of target bacteria. Here, we localize the receptor-binding domain to the central region of E. coli CdiA. Receptor-binding domains vary between CdiA proteins, and E. coli strains collectively encode at least four distinct effector classes. Further, we show that receptor specificity can be altered by exchanging receptor-binding regions, demonstrating the modularity of this domain. We propose that novel CdiA effectors are naturally generated through genetic recombination to interchange different receptor-binding domains and toxin payloads.


Subject(s)
Antibiosis , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/metabolism , Binding Sites , Porins/metabolism , Protein Binding , Protein Domains , Receptors, Virus/metabolism
6.
PLoS Genet ; 12(6): e1006145, 2016 06.
Article in English | MEDLINE | ID: mdl-27355474

ABSTRACT

Contact-dependent growth inhibition (CDI) systems are widespread amongst Gram-negative bacteria where they play important roles in inter-cellular competition and biofilm formation. CDI+ bacteria use cell-surface CdiA proteins to bind neighboring bacteria and deliver C-terminal toxin domains. CDI+ cells also express CdiI immunity proteins that specifically neutralize toxins delivered from adjacent siblings. Genomic analyses indicate that cdi loci are commonly found on plasmids and genomic islands, suggesting that these Type 5 secretion systems are spread through horizontal gene transfer. Here, we examine whether CDI toxin and immunity activities serve to stabilize mobile genetic elements using a minimal F plasmid that fails to partition properly during cell division. This F plasmid is lost from Escherichia coli populations within 50 cell generations, but is maintained in ~60% of the cells after 100 generations when the plasmid carries the cdi gene cluster from E. coli strain EC93. By contrast, the ccdAB "plasmid addiction" module normally found on F exerts only a modest stabilizing effect. cdi-dependent plasmid stabilization requires the BamA receptor for CdiA, suggesting that plasmid-free daughter cells are inhibited by siblings that retain the CDI+ plasmid. In support of this model, the CDI+ F plasmid is lost rapidly from cells that carry an additional cdiI immunity gene on a separate plasmid. These results indicate that plasmid stabilization occurs through elimination of non-immune cells arising in the population via plasmid loss. Thus, genetic stabilization reflects a strong selection for immunity to CDI. After long-term passage for more than 300 generations, CDI+ plasmids acquire mutations that increase copy number and result in 100% carriage in the population. Together, these results show that CDI stabilizes genetic elements through a toxin-mediated surveillance mechanism in which cells that lose the CDI system are detected and eliminated by their siblings.


Subject(s)
Contact Inhibition/genetics , Contact Inhibition/physiology , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli/physiology , Membrane Proteins/metabolism , Bacterial Toxins/metabolism , Biofilms/growth & development , F Factor/metabolism
7.
Mol Microbiol ; 94(2): 466-81, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25174572

ABSTRACT

Contact-dependent growth inhibition (CDI) is a mode of bacterial competition orchestrated by the CdiB/CdiA family of two-partner secretion proteins. The CdiA effector extends from the surface of CDI(+) inhibitor cells, binds to receptors on neighbouring bacteria and delivers a toxin domain derived from its C-terminal region (CdiA-CT). Here, we show that CdiA-CT toxin translocation requires the proton-motive force (pmf) within target bacteria. The pmf is also critical for the translocation of colicin toxins, which exploit the energized Ton and Tol systems to cross the outer membrane. However, CdiA-CT translocation is clearly distinct from known colicin-import pathways because ΔtolA ΔtonB target cells are fully sensitive to CDI. Moreover, we provide evidence that CdiA-CT toxins can be transferred into the periplasm of de-energized target bacteria, indicating that transport across the outer membrane is independent of the pmf. Remarkably, CDI toxins transferred under de-energized conditions remain competent to enter the target-cell cytoplasm once the pmf is restored. Collectively, these results indicate that outer- and inner-membrane translocation steps can be uncoupled, and that the pmf is required for CDI toxin transport from the periplasm to the target-cell cytoplasm.


Subject(s)
Bacterial Toxins/metabolism , Cell Membrane/metabolism , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism , Proton-Motive Force , Colicins/metabolism , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...