Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915624

ABSTRACT

Spermatogenesis is a biological process within the testis that produces haploid spermatozoa for the continuity of species. Sertoli cells are somatic cells in the seminiferous epithelium that orchestrate spermatogenesis. Cyclic reorganization of Sertoli cell actin cytoskeleton is vital for spermatogenesis, but the underlying mechanism remains largely unclear. Here, we report that RNA-binding protein PTBP1 controls Sertoli cell actin cytoskeleton reorganization by programming alternative splicing of actin cytoskeleton regulators. This splicing control enables ectoplasmic specializations, the actin-based adhesion junctions, to maintain the blood-testis barrier and support spermatid transport and transformation. Particularly, we show that PTBP1 promotes actin bundle formation by repressing the inclusion of exon 14 of Tnik, a kinase present at the ectoplasmic specialization. Our results thus reveal a novel mechanism wherein Sertoli cell actin cytoskeleton dynamics is controlled post-transcriptionally by utilizing functionally distinct isoforms of actin regulatory proteins, and PTBP1 is a critical regulatory factor in generating such isoforms.

2.
Nucleic Acids Res ; 51(5): 2397-2414, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36744439

ABSTRACT

The intestinal epithelial regeneration is driven by intestinal stem cells under homeostatic conditions. Differentiated intestinal epithelial cells, such as Paneth cells, are capable of acquiring multipotency and contributing to regeneration upon the loss of intestinal stem cells. Paneth cells also support intestinal stem cell survival and regeneration. We report here that depletion of an RNA-binding protein named polypyrimidine tract binding protein 1 (PTBP1) in mouse intestinal epithelial cells causes intestinal stem cell death and epithelial regeneration failure. Mechanistically, we show that PTBP1 inhibits neuronal-like splicing programs in intestinal crypt cells, which is critical for maintaining intestinal stem cell stemness. This function is achieved at least in part through promoting the non-productive splicing of its paralog PTBP2. Moreover, PTBP1 inhibits the expression of an AKT inhibitor PHLDA3 in Paneth cells and permits AKT activation, which presumably maintains Paneth cell plasticity and function in supporting intestinal stem cell niche. We show that PTBP1 directly binds to a CU-rich region in the 3' UTR of Phlda3, which we demonstrate to be critical for downregulating the mRNA and protein levels of Phlda3. Our results thus reveal the multifaceted in vivo regulation of intestinal epithelial regeneration by PTBP1 at the post-transcriptional level.


Subject(s)
Gene Expression Regulation , Heterogeneous-Nuclear Ribonucleoproteins , Proto-Oncogene Proteins c-akt , Animals , Mice , Cell Differentiation , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Regeneration/genetics , RNA Splicing
3.
J Immunol ; 205(7): 1878-1885, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32839236

ABSTRACT

Placental immune responses are highly regulated to strike a balance between protection and tolerance. For relatively mild infections, protection encompasses both the mother and fetus; however, during worsening conditions, protection becomes exclusively reserved for the mother. Previously, we and others have shown that the host factor perforin-2 plays a central role in protecting mice and cells against infection. In this study, we analyzed perforin-2 activity in the mouse placenta to determine whether perforin-2 plays a similarly protective role. We show that perforin-2 is critical for inhibiting Listeria monocytogenes colonization of the placenta and fetus and that this protection is due to both maternal and fetal-encoded perforin-2. Perforin-2 mRNA is readily detectable in individual immune cells of the decidua, and these levels are further enhanced specifically in decidual macrophages during high-dose infections that result in fetal expulsion. Unexpectedly, inductive perforin-2 expression in decidual macrophages did not occur during milder infections in which fetal viability remained intact. This pattern of expression significantly differed from that observed in splenic macrophages in which inductive perforin-2 expression was observed in both high and mild infection conditions. In the placenta, inductive perforin-2 expression in decidual macrophages was coincident with their polarization from a CD206+ MHC class IIlo to CD206- MHC class IIhi phenotype that normally occurs in the placenta during high-burden infections. Our results suggest that perforin-2 is part of a host response that is protective either for both the mother and fetus in milder infections or exclusively for the mother during high-dose infections.


Subject(s)
Fetus/immunology , Listeria monocytogenes/immunology , Listeriosis/immunology , Placenta/immunology , Pore Forming Cytotoxic Proteins/metabolism , Pregnancy Complications, Infectious/immunology , Animals , Blood-Borne Pathogens , Cells, Cultured , Female , Humans , Immunity, Maternally-Acquired , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Placenta/microbiology , Pore Forming Cytotoxic Proteins/genetics , Pregnancy , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...