Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Surg Neurol Int ; 13: 553, 2022.
Article in English | MEDLINE | ID: mdl-36600740

ABSTRACT

Background: Charcot-Marie-Tooth disease (CMT) is among the most common group of inherited neuromuscular diseases. SACS mutations were demonstrated to cause autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). However, there have been few case reports regarding to NEFH and SACS gene mutation to CMT in Vietnamese patients, and the diagnosis of CMT and ARSACS in the clinical setting still overlapped. Case Description: We report two patients presenting with sensorimotor neuropathy without cerebellar ataxia, spasticity and other neurological features, being diagnosed with intermediate form CMT by electrophysiological and clinical examination and neuroimaging. By whole-exome sequencing panel of two affected members, and PCR Sanger on NEFH and SACS genes to confirm the presence of selected variants on their parents, we identified a novel missense variant NEFH c.1925C>T (inherited from the mother) in an autosomal dominant heterozygous state, and two recessive SACS variants (SACS c.13174C>T, causing missense variant, and SACS c.11343del, causing frameshift variant) (inherited one from the mother and another from the father) in these two patients. Clinical and electrophysiological findings on these patients did not match classical ARSACS. To the best of our knowledge, this is the first case report of two affected siblings diagnosed with CMT carrying both a novel NEFH variant and biallelic SACS variants. Conclusion: We concluded that this novel NEFH variant is likely benign, and biallelic SACS mutation (c.13174C>T and c.11343del) is likely pathogenic for intermediate form CMT. This study is also expected to emphasize the current knowledge of intermediate form CMT, ARSACS, and the phenotypic spectrum of NEFH-related and SACS-related disorders. We expect to give a new understanding of CMT; however, further research should be conducted to provide a more thorough knowledge of the pathogenesis of CMT in the future.

2.
J Anal Methods Chem ; 2021: 6639964, 2021.
Article in English | MEDLINE | ID: mdl-33747595

ABSTRACT

Carboxymethyl cellulose (CMC) is obtained from Vietnamese pineapple leaf waste through etherification. By treating pineapple leaf powder with a solution of NaOH then with HNO3 at 90°C for an appropriate time, cellulose can be efficiently extracted. To obtain CMC, carboxymethylation was performed by reaction of the pineapple cellulose with chloroacetic acid at 60°C for 1.5 h. The optimal conditions for this reaction were established. The resulting CMC had a degree of substitution (DS) of 0.91. The hydrogel was prepared by graft copolymerization of acrylic acid and acrylamide to the synthesized CMC. During that reaction, N,N'methylenebisacrylamide (MBA) served as the crosslinking agent and ammonium persulfate (APS) as the initiator. The maximum hydrogel absorbencies for distilled water and 0.9 wt.% NaCl solution were relatively high, namely, 588.2 g/g and 79.3 g/g, respectively. Additionally, the water swelling and water retention behaviors of the hydrogel in soil were also investigated. The results showed that this hydrogel can be employed as a suitable moisture-holding additive in soil for cultivation purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...