Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Cell ; 34(7): ar71, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37074945

ABSTRACT

Nonmuscle myosin IIB (NMIIB) is considered a primary force generator during cell motility. Yet many cell types, including motile cells, do not necessarily express NMIIB. Given the potential of cell engineering for the next wave of technologies, adding back NMIIB could be a strategy for creating supercells with strategically altered cell morphology and motility. However, we wondered what unforeseen consequences could arise from such an approach. Here, we leveraged pancreatic cancer cells, which do not express NMIIB. We generated a series of cells where we added back NMIIB and strategic mutants that increase the ADP-bound time or alter the phosphorylation control of bipolar filament assembly. We characterized the cellular phenotypes and conducted RNA-seq analysis. The addition of NMIIB and the different mutants all have specific consequences for cell morphology, metabolism, cortical tension, mechanoresponsiveness, and gene expression. Major modes of ATP production are shifted, including alterations in spare respiratory capacity and the dependence on glycolysis or oxidative phosphorylation. Several metabolic and growth pathways undergo significant changes in gene expression. This work demonstrates that NMIIB is highly integrated with many cellular systems and simple cell engineering has a profound impact that extends beyond the primary contractile activity presumably being added to the cells.


Subject(s)
Nonmuscle Myosin Type IIA , Nonmuscle Myosin Type IIB , Nonmuscle Myosin Type IIB/metabolism , Cellular Reprogramming , Cytoskeleton/metabolism , Muscle Contraction , Phosphorylation , Nonmuscle Myosin Type IIA/metabolism
2.
Biophys J ; 121(23): 4600-4614, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36273263

ABSTRACT

Cell shape change processes, such as proliferation, polarization, migration, and cancer metastasis, rely on a dynamic network of macromolecules. The proper function of this network enables mechanosensation, the ability of cells to sense and respond to mechanical cues. Myosin II and cortexillin I, critical elements of the cellular mechanosensory machinery, preassemble in the cytoplasm of Dictyostelium cells into complexes that we have termed contractility kits (CKs). Two IQGAP proteins then differentially regulate the mechanoresponsiveness of the cortexillin I-myosin II elements within CKs. To investigate the mechanism of CK self-assembly and gain insight into possible molecular means for IQGAP regulation, we developed a coarse-grained excluded volume molecular model in which all protein polymers are represented by nm-sized spheres connected by spring-like links. The model is parameterized using experimentally measured parameters acquired through fluorescence cross-correlation spectroscopy and fluorescence correlation spectroscopy, which describe the interaction affinities and diffusion coefficients for individual molecular components, and which have also been validated via several orthogonal methods. Simulations of wild-type and null-mutant conditions implied that the temporal order of assembly of these kits is dominated by myosin II dimer formation and that IQGAP proteins mediate cluster growth. In addition, our simulations predicted the existence of "ambiguous" CKs that incorporate both classes of IQGAPs, and we confirmed this experimentally using fluorescence cross-correlation spectroscopy. The model serves to describe the formation of the CKs and how their assembly enables and regulates mechanosensation at the molecular level.


Subject(s)
Dictyostelium
3.
J Cell Biol ; 221(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36165849

ABSTRACT

Cellular functions, such as division and migration, require cells to undergo robust shape changes. Through their contractility machinery, cells also sense, respond, and adapt to their physical surroundings. In the cytoplasm, the contractility machinery organizes into higher order assemblies termed contractility kits (CKs). Using Dictyostelium discoideum, we previously identified Discoidin I (DscI), a classic secreted lectin, as a CK component through its physical interactions with the actin crosslinker Cortexillin I (CortI) and the scaffolding protein IQGAP2. Here, we find that DscI ensures robust cytokinesis through regulating intracellular components of the contractile machinery. Specifically, DscI is necessary for normal cytokinesis, cortical tension, membrane-cortex connections, and cortical distribution and mechanoresponsiveness of CortI. The dscI deletion mutants also have complex genetic epistatic relationships with CK components, acting as a genetic suppressor of cortI and iqgap1, but as an enhancer of iqgap2. This work underscores the fact that proteins like DiscI contribute in diverse ways to the activities necessary for optimal cell function.


Subject(s)
Dictyostelium , Discoidins , Lectins , Actins/metabolism , Cytoplasm/metabolism , Dictyostelium/genetics , Dictyostelium/metabolism , Discoidins/metabolism , Lectins/metabolism , Microfilament Proteins , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , ras GTPase-Activating Proteins/metabolism
4.
Biophys J ; 121(19): 3573-3585, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35505610

ABSTRACT

With the number of cancer cases projected to significantly increase over time, researchers are currently exploring "nontraditional" research fields in the pursuit of novel therapeutics. One emerging area that is steadily gathering interest revolves around cellular mechanical machinery. When looking broadly at the physical properties of cancer, it has been debated whether a cancer could be defined as either stiffer or softer across cancer types. With numerous articles supporting both sides, the evidence instead suggests that cancer is not particularly regimented. Instead, cancer is highly adaptable, allowing it to endure the constantly changing microenvironments cancer cells encounter, such as tumor compression and the shear forces in the vascular system and body. What allows cancer cells to achieve this adaptability are the particular proteins that make up the mechanical network, leading to a particular mechanical program of the cancer cell. Coincidentally, some of these proteins, such as myosin II, α-actinins, filamins, and actin, have either altered expression in cancer and/or some type of direct involvement in cancer progression. For this reason, targeting the mechanical system as a therapeutic strategy may lead to more efficacious treatments in the future. However, targeting the mechanical program is far from trivial. As involved as the mechanical program is in cancer development and metastasis, it also helps drive many other key cellular processes, such as cell division, cell adhesion, metabolism, and motility. Therefore, anti-cancer treatments targeting the mechanical program must take great care to avoid potential side effects. Here, we introduce the potential of targeting the mechanical program while also providing its challenges and shortcomings as a strategy for cancer treatment.


Subject(s)
Actins , Neoplasms , Actinin , Actins/metabolism , Filamins , Humans , Myosin Type II/metabolism , Neoplasms/pathology , Tumor Microenvironment
5.
Front Cell Dev Biol ; 8: 441, 2020.
Article in English | MEDLINE | ID: mdl-32626704

ABSTRACT

Cytokinesis is the step of the cell cycle in which the cell must faithfully separate the chromosomes and cytoplasm, yielding two daughter cells. The assembly and contraction of the contractile network is spatially and temporally coupled with the formation of the mitotic spindle to ensure the successful completion of cytokinesis. While decades of studies have elucidated the components of this machinery, the so-called usual suspects, and their functions, many lines of evidence are pointing to other unexpected proteins and sub-cellular systems as also being involved in cytokinesis. These we term the unusual suspects. In this review, we introduce recent discoveries on some of these new unusual suspects and begin to consider how these subcellular systems snap together to help complete the puzzle of cytokinesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...