Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33690115

ABSTRACT

Low-cost ultrasound imaging systems are desired for many applications outside of radiology and cardiology departments. By making ultrasound systems smaller and lower cost, the use of ultrasound has spread from these mainstays to other areas of the hospital such as emergency departments and critical care. To further miniaturize and reduce the cost of ultrasound systems, we have investigated novel Fresnel-based beamforming methods to reduce front-end hardware requirements. Previous studies with linear and curvilinear arrays demonstrated comparable imaging performance using Fresnel-based beamforming versus delay-and-sum (DAS) beamforming. In this work, we extend Fresnel-based beamforming to phased arrays with beam steering. To accomplish this in transmit mode, we introduce a technique called a gated transmit beamformer where multicycle bursts are gated using multiplexers. In receive mode, a 64-element 2.5-MHz phased array is broken up into four 16-element subapertures, and each subaperture performs Fresnel beamforming before a final beamforming step is done. Timing errors are inevitable with Fresnel-based beamforming leading to higher sidelobe and clutter levels. To suppress sidelobe and clutter contributions, we also combine this with our previous technique, dual apodization with cross correlation (DAX) to improve contrast. Field II simulations are performed to evaluate spatial resolution and contrast-to-noise ratio and compared to standard DAS beamforming. Fresnel-based and gated transmit beamforming is also implemented using synthetic aperture data from tissue-mimicking phantoms. Lastly, a hardware proof-of-concept (PoC) Fresnel beamformer was designed, assembled, and evaluated with images from tissue-mimicking phantoms and initial in vivo images.


Subject(s)
Algorithms , Phantoms, Imaging , Signal-To-Noise Ratio , Ultrasonography
2.
Ultrasound Med Biol ; 40(10): 2488-98, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25018027

ABSTRACT

Fresnel beamforming is a beamforming method with a delay profile similar in shape to a physical Fresnel lens. The advantage of Fresnel beamforming is the reduced channel count, which consists of four to eight transmit and two analog-to-digital receive channels. Fresnel beamforming was found to perform comparably to conventional delay-and-sum beamforming. However, the performance of Fresnel beamforming is highly dependent on focal errors. These focal errors result in high side-lobe levels and further reduce the performance of Fresnel beamforming in the presence of phase aberration. With the advantages of lower side-lobe levels and suppression of aberration effects, harmonic imaging offers an effective solution to the limitations of Fresnel beamforming. We describe the implementation of tissue harmonic imaging and pulse inversion harmonic imaging in Fresnel beamforming, followed by dual apodization with cross-correlation, to improve image quality. Compared with conventional delay-and-sum beamforming, experimental results indicated contrast-to-noise ratio improvements of 10%, 49% and 264% for Fresnel beamforming using tissue harmonic imaging in the cases of no aberrator, 5-mm pork aberrator and 12-mm pork aberrator, respectively. These improvements were 22%, 57% and 352% for Fresnel beamforming using pulse inversion harmonic imaging. Moreover, dual apodization with cross-correlation was found to further improve the contrast-to-noise ratios in all cases. Harmonic imaging was also found to narrow the lateral beamwidth and shorten the axial pulse length by at least 25% and 21%, respectively, for Fresnel beamforming at different aberration levels. These results suggest the effectiveness of harmonic imaging in improving image quality for Fresnel beamforming, especially in the presence of phase aberration. Even though this combination of Fresnel beamforming and harmonic imaging does not outperform delay-and-sum beamforming combined with harmonic imaging, it provides the benefits of reduced channel count and potentially reduced cost and size of ultrasound systems.


Subject(s)
Cysts/diagnostic imaging , Image Enhancement/methods , Ultrasonography/methods , Algorithms , Animals , Contrast Media , Meat , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio , Swine , Ultrasonography/instrumentation
3.
Article in English | MEDLINE | ID: mdl-21244979

ABSTRACT

In this paper, we propose a modified electronic Fresnel-based beamforming method for low-cost portable ultrasound systems. This method uses a unique combination of analog and digital beamforming methods. Two versions of Fresnel beamforming are presented in this paper: 4-phase (4 different time delays or phase shifts) and 8-phase (8 different time delays or phase shifts). The advantage of this method is that a system with 4 to 8 transmit channels and 2 receive channels with a network of switches can be used to focus an array with 64 to 128 elements. The simulation and experimental results show that Fresnel beamforming image quality is comparable to traditional delay-and-sum (DAS) beamforming in terms of spatial resolution and contrast-to-noise ratio (CNR) under certain system parameters. With an f-number of 2 and 50% signal bandwidth, the experimental lateral beamwidths are 0.54, 0.67, and 0.66 mm and the axial pulse lengths are 0.50, 0.51, and 0.50 mm for DAS, 8-phase, and 4-phase Fresnel beamforming, respectively. The experimental CNRs are 4.66, 4.42, and 3.98, respectively. These experimental results are in good agreement with simulation results.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Ultrasonography/methods , Computer Simulation , Cysts/diagnostic imaging , Models, Biological , Phantoms, Imaging , Transducers , Ultrasonography/economics , Ultrasonography/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...