Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792114

ABSTRACT

Flavonoids and stilbenoids, crucial secondary metabolites abundant in plants and fungi, display diverse biological and pharmaceutical activities, including potent antioxidant, anti-inflammatory, and antimicrobial effects. However, conventional production methods, such as chemical synthesis and plant extraction, face challenges in sustainability and yield. Hence, there is a notable shift towards biological production using microorganisms like Escherichia coli and yeast. Yet, the drawbacks of using E. coli and yeast as hosts for these compounds persist. For instance, yeast's complex glycosylation profile can lead to intricate protein production scenarios, including hyperglycosylation issues. Consequently, Corynebacterium glutamicum emerges as a promising alternative, given its adaptability and recent advances in metabolic engineering. Although extensively used in biotechnological applications, the potential production of flavonoid and stilbenoid in engineered C. glutamicum remains largely untapped compared to E. coli. This review explores the potential of metabolic engineering in C. glutamicum for biosynthesis, highlighting its versatility as a cell factory and assessing optimization strategies for these pathways. Additionally, various metabolic engineering methods, including genomic editing and biosensors, and cofactor regeneration are evaluated, with a focus on C. glutamicum. Through comprehensive discussion, the review offers insights into future perspectives in production, aiding researchers and industry professionals in the field.


Subject(s)
Corynebacterium glutamicum , Flavonoids , Metabolic Engineering , Stilbenes , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Metabolic Engineering/methods , Flavonoids/biosynthesis , Flavonoids/metabolism , Stilbenes/metabolism
2.
J Pharm Technol ; 38(2): 106-114, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35571348

ABSTRACT

Introduction: Telepharmacy, the application of information and communication technologies in healthcare services, has been adopted in many countries to provide patients with pharmaceutical care. However, it has yet to be widely used in Vietnam. This study was conducted to assess the current status of use and the factors associated with the willingness to use telepharmacy of pharmacists in Vietnam. Methods: A descriptive cross-sectional study was conducted from February to July 2021; 414 pharmacists were recruited to fill in an online survey. Results: Overall, 86.7% of participants have used telepharmacy application and 87.2% of them were willing to apply telepharmacy in pharmacy practice. According to our multivariate analysis, the level of readiness was associated with positive attitude (odds ratio [OR] = 4.67; 95% confidence interval [CI]: 2.26-9.66), and a good behavior (OR = 11.34; 95% CI: 3.84-33.45). Discussion: Developing a telepharmacy system with appropriate features is essential to meet the requirements of pharmacy practice amid the spread of the COVID-19 pandemic.

3.
Environ Sci Pollut Res Int ; 26(33): 34521-34530, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31643014

ABSTRACT

This study investigated the prevalence of antibiotic-resistant bacteria and genes in fecal sludge and soil in Ho Chi Minh City, Vietnam, and identified the factors contributing to the survival of antibiotic-resistant bacteria in soil. Sludge and soil samples (n = 24 and 55, respectively) were collected from residential septic systems and environmental reservoirs (i.e., canals, rivers, and parks) in twelve districts of Ho Chi Minh City and tested against a library of 12 antibiotic-resistant genes and 1 integron gene. The susceptibility of isolated Escherichia coli from sludge and soil (n = 104 and 129, respectively) was tested against nine antibiotics. Over 60% of sludge and soil samples harbored sul1, ere(A), intI1, cmIA, and tet(A) genes. The three most common phenotypic resistances found in E. coli isolated from sludge and soil were to ampicillin, tetracycline, and sulfamethoxazole/trimethoprim. In a temporal microcosm study of antibiotic-susceptible and multi-drug-resistant E. coli inoculated in soil, temperature (21.4 vs. 30 °C), resistance phenotype, and soil background microbial community were associated with E. coli decay rates over 73 days. This is the first study that provides insights into the high prevalence of antibiotic resistance in septic systems and environmental reservoirs in Ho Chi Minh City, Vietnam. Findings highlight that the fecal sludge and soil environments in Vietnam are likely reservoirs for dissemination of and human exposure to antibiotic resistance.


Subject(s)
Drug Resistance, Microbial/genetics , Environmental Monitoring , Sewage/microbiology , Soil Microbiology , Ampicillin , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Feces/microbiology , Humans , Integrons , Soil , Tetracycline , Vietnam
4.
Environ Sci Technol ; 53(13): 7724-7735, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31149822

ABSTRACT

Dissolved organic matter (DOM) is a natural photosensitizer that contributes to the inactivation of microbial pathogens. In constructed treatment wetlands with open water areas DOM can promote sunlight disinfection of wastewater effluent, but a better understanding of DOM spectroscopic and photochemical properties and how they are impacted by different unit process wetlands is needed to inform design. The goals of this study were: (1) to investigate whether DOM isolates realistically represent the photochemistry of the source DOM in its original water and (2) to observe how changes of DOM along a treatment wetland affect its photochemistry, including pathogen inactivation. A pilot scale unit process wetland was studied that consisted of three different cells (open water, cattail, and bulrush) fed by secondary wastewater effluent. DOM was isolated using solid-phase extraction (SPE), photochemically characterized, and compared to the original water samples and standard DOMs. For MS2 coliphage, a virus indicator, the most efficient photosensitizer was the wastewater DOM isolated from the influent of the wetland, while for the bacterial indicator Enterococcus faecalis, inactivation results were comparable across wetland isolates. SPE resulted in isolation of 47% to 59% of whole water DOM and enriched for colored DOM. Singlet oxygen precursors were efficiently isolated, while some excited triplet state precursors remained in the extraction discharge. DOM processing indicators such as SUVA254, SUVA280, and spectral slopes including E2/ E3 ratios were reflected in the isolates. Photoinactivation of MS2 was significantly lower in both the reconstituted water samples and isolates compared to the original water sample, possibly due to disturbance of the trans-molecular integrity of DOM molecules by SPE that affects distance between MS2 and DOM sites with locally higher singlet oxygen production. For E. faecalis, results were similar in original water samples and isolates. Higher sorption of DOM to E. faecalis was roughly correlated with higher photoinactivation rates. To enhance sunlight disinfection in unit process wetlands, there is no advantage to placing open water cells after vegetated cells, as passage through the vegetated cells led to increased light absorption and lower singlet oxygen and triplet-state quantum yields and steady state concentrations.


Subject(s)
Photosensitizing Agents , Wetlands , Singlet Oxygen , Sunlight , Wastewater
5.
Front Environ Sci ; 5: 90, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-33365315

ABSTRACT

The Blue Diversion AUTARKY Toilet is a urine-diverting toilet with on-site treatment. The toilet is being developed to provide a safe and affordable sanitation technology for people who lack access to sewer-based sanitation. Water used for personal hygiene, hand washing, and flushing to rinse urine- and feces-collection bowls is treated, stored, and recycled for reuse to reduce reliance on external water supplies. The system provides an opportunity to investigate hygiene of water for reuse following treatment. Treatment in the toilet includes a Biologically Activated Membrane Bioreactor (BAMBi) followed by a secondary treatment technology. To identify effective secondary treatment, three options, including granular activated carbon (GAC) only, GAC+chlorine (sodium hypochlorite), and GAC+electrolysis are considered based on the bacterial inactivation and growth inhibition efficiency. Four different hygiene-relevant bacteria are tested: Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, and Salmonella typhimurium. Our evaluation demonstrates that-despite treatment of water with the BAMBi-E. coli, P aeruginosa, and S. typhimurium have the potential to grow during storage in the absence of microbial competition. Including the indigenous microbial community influences bacterial growth in different ways: E. coli growth decreases but P. aeruginosa growth increases relative to no competition. The addition of the secondary treatment options considerably improves water quality. A column of GAC after the BAMBi reduces E. coli growth potential by 2 log10, likely due to the reduction of carbon sources. Additional treatments including chlorination and electrolysis provide further safety margins, with more than 5 log-10 inactivation of E. coli. However, reactivation and/or regrowth of E. coli and P. aeruginosa occurs under in the absence of residual disinfectant. Treatment including the BAMBi, GAC, and electrolysis appear to be promising technologies to control bacterial growth during storage in water intended for reuse.

6.
Environ Sci Technol ; 49(17): 10303-11, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26230383

ABSTRACT

Treatment and water reuse in decentralized systems is envisioned to play a greater role in our future urban water infrastructure due to growing populations and uncertainty in quality and quantity of traditional water resources. In this study, we utilized life-cycle assessment (LCA) to analyze the energy consumption and greenhouse gas (GHG) emissions of an operating Living Machine (LM) wetland treatment system that recycles wastewater in an office building. The study also assessed the performance of the local utility's centralized wastewater treatment plant, which was found to be significantly more efficient than the LM (79% less energy, 98% less GHG emissions per volume treated). To create a functionally equivalent comparison, the study developed a hypothetical scenario in which the same LM design flow is recycled via centralized infrastructure. This comparison revealed that the current LM has energy consumption advantages (8% less), and a theoretically improved LM design could have GHG advantages (24% less) over the centralized reuse system. The methodology in this study can be applied to other case studies and scenarios to identify conditions under which decentralized water reuse can lower GHG emissions and energy use compared to centralized water reuse when selecting alternative approaches to meet growing water demands.


Subject(s)
Air Pollutants/analysis , Conservation of Energy Resources , Gases/analysis , Greenhouse Effect , Recycling/methods , Wastewater/analysis , Water Purification/methods , Drinking Water
7.
Water Res ; 83: 282-92, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26164800

ABSTRACT

A pilot-scale open-water unit process wetland was monitored for one year and found to be effective in enhancing sunlight inactivation of fecal indicator bacteria (FIB). The removal of Escherichia coli and enterococci in the open-water wetland receiving non-disinfected secondary municipal wastewater reached 3 logs and 2 logs in summer time, respectively. Pigmented enterococci were shown to be significantly more resistant to sunlight inactivation than non-pigmented enterococci. A model was developed to predict the inactivation of E. coli, and pigmented and non-pigmented enterococci that accounts for endogenous and exogenous sunlight inactivation mechanisms and dark processes. Endogenous inactivation rates were modeled using the sum of UVA and UVB irradiance. Exogenous inactivation was only significant for enterococci, and was modeled as a function of steady-state singlet oxygen concentration. The rate constants were determined from lab experiments and an empirical correction factor was used to account for differences between lab and field conditions. The model was used to predict removal rate constants for FIB in the pilot-scale wetland; considering the variability of the monitoring data, there was general agreement between the modeled values and those determined from measurements. Using the model, we estimate that open-water wetlands at 40° latitude with practical sizes can achieve 3-log (99.9%) removal of E. coli and non-pigmented enterococci throughout the year [5.5 ha and 7.0 ha per million gallons of wastewater effluent per day (MGD), respectively]. Differences in sunlight inactivation rates observed between pigmented and non-pigmented enterococci, as well as between lab-cultured and indigenous wastewater bacteria highlight the challenges of using FIB as model organisms for actual pathogens in natural sunlit environments.


Subject(s)
Bacteria/radiation effects , Sunlight , Waste Disposal, Fluid/methods , Wastewater/microbiology , Water Purification/methods , Wetlands , Enterococcus/radiation effects , Escherichia coli/radiation effects , Feces/microbiology , Models, Theoretical , Pilot Projects , Ultraviolet Rays
8.
Environ Sci Technol ; 49(5): 2757-66, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25664567

ABSTRACT

Sunlight inactivation is an important mode of disinfection for viruses in surface waters. In constructed wetlands, for example, open-water cells can be used to promote sunlight disinfection and remove pathogenic viruses from wastewater. To aid in the design of these systems, we developed predictive models of virus attenuation that account for endogenous and exogenous sunlight-mediated inactivation mechanisms. Inactivation rate models were developed for two viruses, MS2 and poliovirus type 3; laboratory- and field-scale experiments were conducted to evaluate the models' ability to estimate inactivation rates in a pilot-scale, open-water, unit-process wetland cell. Endogenous inactivation rates were modeled using either photoaction spectra or total, incident UVB irradiance. Exogenous inactivation rates were modeled on the basis of virus susceptibilities to singlet oxygen. Results from both laboratory- and field-scale experiments showed good agreement between measured and modeled inactivation rates. The modeling approach presented here can be applied to any sunlit surface water and utilizes easily measured inputs such as depth, solar irradiance, water matrix absorbance, singlet oxygen concentration, and the virus-specific apparent second-order rate constant with singlet oxygen (k2). Interestingly, the MS2 k2 in the open-water wetland was found to be significantly larger than k2 observed in other waters in previous studies. Examples of how the model can be used to design and optimize natural treatment systems for virus inactivation are provided.


Subject(s)
Models, Biological , Sunlight , Virus Inactivation/radiation effects , Viruses/radiation effects , Water Purification/methods , Ultraviolet Rays , Wastewater/virology
9.
Environ Sci Technol ; 48(7): 3891-8, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24575954

ABSTRACT

The endogenous sunlight inactivation rates of MS2 coliphage in photosensitizer-free water were measured (kobs) under different light conditions and compared to modeled inactivation rates (kmod) computed using a previously published action spectrum. Experiments were conducted under simulated and natural sunlight. There was generally good agreement between modeled and observed MS2 sunlight inactivation rates in the summer and winter, suggesting that the action spectrum can be used to predict changes in the inactivation rate caused by diurnal and seasonal changes in natural sunlight irradiance. However, we show that a major source of uncertainty in the predictions is the ability to accurately measure or model the comparatively weak and highly variable solar irradiance between 280 and 300 nm, a range to which the inactivation rate is very sensitive. The action spectrum was also used to predict the endogenous inactivation rates of MS2 at different depths in a column of strongly humic-colored [i.e., solar ultraviolet (UV)-attenuating] wetland water under simulated sunlight; we observed fairly good agreement between kobs and kmod, suggesting that the action spectrum can be used to estimate the decrease in the endogenous inactivation rate caused by spectrally selective sunlight attenuation in the water column.


Subject(s)
Levivirus/drug effects , Levivirus/radiation effects , Photosensitizing Agents/pharmacology , Sunlight , Virus Inactivation/drug effects , Virus Inactivation/radiation effects , Models, Theoretical , Seasons , Time Factors , Water Microbiology
10.
Environ Eng Sci ; 30(8): 421-436, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23983451

ABSTRACT

Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.

SELECTION OF CITATIONS
SEARCH DETAIL
...