Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Chem ; 402(10): 1213-1224, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34342947

ABSTRACT

Osteoporosis, one of the most serious public health concerns caused by an imbalance between bone resorption and bone formation, has a major impact on the population. Therefore, finding the effective osteogenic compounds for the treatment of osteoporosis is a promising research approach. In our study, tamarind (Tamarindus indica L.) seed polysaccharide (TSP) extracted from tamarind seed was subjected to synthesize its sulfate derivatives. The 1H NMR, FT-IR, SEM, monosaccharide compositions and elemental analysis data revealed that tamarind seed polysaccharide sulfate (TSPS) was successfully prepared. As the result, TSPS showed potent effects on inducing osteoblast differentiation via increasing alkaline phosphatase (ALP) activity up to 20% after 10 days and bone mineralization approximately 58% after four weeks at concentration of 20 µg/mL, whereas no statistically increase for both ALP activity and bone mineralization was observed in TSP treatment. Furthermore, TSPS enhanced expression of several marker genes in bone formation. Overall, the obtained data provided novelty on osteogenic compounds originated from TSP of T. indica, as well as scientific fundamentals on drug development and bone tissue engineering for the treatment of osteoporosis and other bone-related diseases.


Subject(s)
Osteogenesis , Tamarindus , Polysaccharides , Sulfates
2.
Iran J Basic Med Sci ; 23(12): 1558-1564, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33489029

ABSTRACT

OBJECTIVES: This research was carried out to investigate the hypoglycemic activity of the ethyl acetate (EtOAc) extract from the roots of Smilax glabra Roxb, which strongly exhibit inhibitory activity against α-glucosidase and α-amylase on in vivo type 2 diabetic model. MATERIALS AND METHODS: Column chromatography combined with crystallization was used to isolate the active fraction and compounds. Chemical structures of the compounds were determined based on the analysis of the spectroscopic data and comparison with the literature data. The α-glucosidase inhibitory activity (AGI) and the α-amylase inhibitory activity (AAI) were determined quantitatively spectrophotometrically using p-nitrophenyl α-D-glucopyranoside and soluble starch as substrates, respectively. The hypoglycemic activity was examined by evaluating its effects on glucose and insulin levels, insulin resistance, and histopathology of the pancreatic islets and livers in diabetic induced mice administrated with nicotinamide-streptozotocin. RESULTS: The EtOAc extract and the bioactive compounds astilbin and 5-O-caffeoylshikimic acid in the extract were isolated and confirmed in structures, AGI, and AAI. The treatment at the doses of 500 and 1000 µg/kg of body weight reduced blood glucose levels down to the physiological level of the physical controls in the diabetic mice after two weeks (P<0.05). Moreover, the treatment improved insulin sensitivity. Histopathology analysis showed recovering effects in the size of the pancreatic islets and no damaging effects on the liver after treatment compared with the control group. CONCLUSION: Our data suggest that the EtOAc extract possesses hypoglycemic activity and has an antidiabetic potential for therapeutic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...