Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(8): 2025-2028, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621067

ABSTRACT

The alignment of a receiver with a pencil beam in a wireless optical power transfer (WOPT) system employing a resonance beam charging (RBC) technology limits the establishment of a resonance cavity. Accurate tracking necessitates precise and dependable monitoring, which requires the exact placement of transmitting and receiving devices. Herein, we present a concept of a two-dimensional (2D) beam steering mechanism for RBC-based WOPT systems utilizing dispersed laser beams. The proposed approach allows a significant improvement, including reduction of scanning times and minimization of errors, in relation to conventional pencil-beam-based systems. Experimental results reveal 14% faster acquisition time efficiency, an 18% improvement in pointing accuracy, and a 24% enhancement in tracking accuracy. These results establish the prerequisites for the implementation of dispersed beam steering in the RBC-based WOPT system. This capability empowers the system to charge movable devices and Internet of Things devices consistently in smart factories.

2.
Front Cardiovasc Med ; 10: 1082214, 2023.
Article in English | MEDLINE | ID: mdl-36760568

ABSTRACT

Objectives: This study aimed to evaluate and compare the diagnostic accuracy of machine learning (ML)- fractional flow reserve (FFR) based on optical coherence tomography (OCT) with wire-based FFR irrespective of the coronary territory. Background: ML techniques for assessing hemodynamics features including FFR in coronary artery disease have been developed based on various imaging modalities. However, there is no study using OCT-based ML models for all coronary artery territories. Methods: OCT and FFR data were obtained for 356 individual coronary lesions in 130 patients. The training and testing groups were divided in a ratio of 4:1. The ML-FFR was derived for the testing group and compared with the wire-based FFR in terms of the diagnosis of ischemia (FFR ≤ 0.80). Results: The mean age of the subjects was 62.6 years. The numbers of the left anterior descending, left circumflex, and right coronary arteries were 130 (36.5%), 110 (30.9%), and 116 (32.6%), respectively. Using seven major features, the ML-FFR showed strong correlation (r = 0.8782, P < 0.001) with the wire-based FFR. The ML-FFR predicted wire-based FFR ≤ 0.80 in the test set with sensitivity of 98.3%, specificity of 61.5%, and overall accuracy of 91.7% (area under the curve: 0.948). External validation showed good correlation (r = 0.7884, P < 0.001) and accuracy of 83.2% (area under the curve: 0.912). Conclusion: OCT-based ML-FFR showed good diagnostic performance in predicting FFR irrespective of the coronary territory. Because the study was a small-size study, the results should be warranted the performance in further large-scale research.

3.
Opt Express ; 30(19): 33767-33779, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36242404

ABSTRACT

A wireless optical power transfer (WOPT) system using an erbium-doped fiber amplifier as an optical power source is proposed to achieve long range, high power, and hazard-free power delivery in the air. The transmitter generates a wide band of amplified spontaneous emission around the central wavelength of 1550 nm. A wavelength division multiplexing (WDM) filter (λ=1552.25 nm) is deployed to obtain a safe narrowband beam illuminating the receiver units. A ball lens retroreflector reflects a small portion of the incident beam back to the transmitter, establishing a closed ring resonance loop. An improved safety mechanism is proposed to terminate the resonance when an obstacle blocks the transmitter-receiver line of sight. The measured incident power of 1 W decreases to 0.79 mW after the WDM filter is deployed which is well within defined maximum permissible exposure standards. For the demonstration of free-space transmission, transmitter-receiver separation is extended to 30 m. The experimental results show that a single-channel WOPT system provides an optical power of 400 mW with a channel linewidth of 1.027 nm over 30 m and an electrical power of 85 mW is acquired using a gallium antimonide photovoltaic.

SELECTION OF CITATIONS
SEARCH DETAIL
...