Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 303: 16-24, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31278957

ABSTRACT

Exenatide (Ex) is a 39-amino acid peptide of glucagon-like peptide-1 (GLP-1) receptor agonist that was approved by the FDA in 2005 as a Type II diabetes treatment. It shows a 53% homology with GLP-1 but has an extended half-life (ca. 2.4 h) relative to GLP-1 (ca. 2-3 min). In this study, to further extend its in vivo half-life, we constructed a fusion protein (Ex-(EBP)10-6xHis) using a biocompatible and inert elastin-based polypeptide (EBP) as a fusion partner. Valine was inserted into the guest position of the pentapeptide (VPGXG), no linker sequence was inserted in between the EBPs, and (EBP)10-6xHis tag was attached to the C-terminus of exenatide. By using a recombinant Saccharomyces cerevisiae expression system, the fusion protein was expressed and secreted to the broth and purified by Ni-NTA affinity chromatography. Compared with the native exenatide, the physical half-life of the fusion protein was ca. 3.7-fold extended while approximately 72% of the in-vitro insulin secreting activity was maintained. However, the biological half-life measured by a glucose tolerance test (GTT) and the hypoglycemic test in mice was not significantly different from that of the native form. The effects of EBPylation on bioactivity and half-life of the fusion protein are similar to those of PEGylation. The result suggests that the bioactivity and half-life should be carefully balanced to obtain optimal fusion proteins. We expect that EBPylation using an optimal repeat number of EBP can be an alternative to chemical modification for therapeutic biobetters with extended half-life.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Elastin/genetics , Recombinant Fusion Proteins/administration & dosage , Saccharomyces cerevisiae/growth & development , Animals , Elastin/metabolism , Exenatide/administration & dosage , Exenatide/pharmacokinetics , Glucose Tolerance Test , Half-Life , Humans , Male , Mice , Peptides , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacokinetics , Saccharomyces cerevisiae/genetics
2.
J Chromatogr A ; 1457: 88-96, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27363735

ABSTRACT

Exenatide is a synthetic version of the 39-mer peptide of Exendin-4, which is an FDA-approved therapeutic against Type II diabetes mellitus. However, exenatide has a very short in-serum half-life and PEGylation have been performed to improve its in-serum stability. PEGylation often yields multivalent binding to non-specific residues, and the desired species should be carefully separated by chromatographies. In this study, we first devised an aqueous-phase, two-step PEGylation process. This consists of thiolation of Lys 12 and 27 residues followed by attachment of PEG-maleimide (10kD) to thiol groups. This process yields various species: mono-PEGylates with positional isomers, di-PEGylate, and other higher MW substances. A prep-grade cationic exchange chromatography (HiTrap SP) at pH 3.0 partially separated mono- and di-PEGylates based on the molar ratio of conjugated PEG and peptide and thus molecular weight of the conjugates. To further investigate the chromatographic separation of positional isomers of mono-PEGylates, we prepared two kinds of exenatide analogs by point mutation; K12C and K27C. Each analog was mono-PEGylated with very high yield (>95%). When a mixture of the two positional isomers of mono-PEGylates was applied to HiTrap SP chromatography, K12C-PEGylate and K27C-PEGylate eluted separately at 0.22M and 0.33M NaCl, respectively. When the proportions of acid and its conjugate base of the amino acid residues adjacent to the PEGylation site at pH 3.0 were analyzed, K27C-PEGylate shows stronger positive charge than K12C-PEGylate, and we propose the residence time difference between the two mono-PEGylates could be due to the charge difference. ELISA result shows that the immuno-binding activity of both analogs and their mono-PEGylates are well maintained. Furthermore, both mono-PEGylates of the analogs show higher than 50-fold improved anti-trypsin stability. We expect that mono-PEGylates of the exenatide analogs are alternatives to the conventional C40-PEG.


Subject(s)
Hypoglycemic Agents/isolation & purification , Peptides/isolation & purification , Polyethylene Glycols/chemistry , Venoms/isolation & purification , Chromatography, Ion Exchange/methods , Exenatide , Hypoglycemic Agents/chemistry , Isomerism , Molecular Weight , Peptides/chemistry , Venoms/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...