Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(21): e2306612, 2024 May.
Article in English | MEDLINE | ID: mdl-38126683

ABSTRACT

Healing of large calvarial bone defects remains challenging. An RNA-guided Split dCas12a system is previously harnessed to activate long non-coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow-derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose-derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co-activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co-activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co-activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration.


Subject(s)
Cell Differentiation , Chondrogenesis , RNA, Long Noncoding , SOXD Transcription Factors , Skull , SOXD Transcription Factors/metabolism , SOXD Transcription Factors/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Adipose Tissue/cytology , Stem Cells/metabolism , Stem Cells/cytology , Osteogenesis/genetics
2.
Glob Ecol Conserv ; 40: e02314, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36312591

ABSTRACT

The wildlife trade is a major cause of species loss and can trigger disease transmission. While the COVID-19 pandemic sparked public interest in eliminating the wildlife trade, a better understanding is needed of the economic repercussions of COVID-19 on those who rely on wildlife farming for their livelihoods. Using the case studies of Ba Ria Vung Tau and Binh Duong provinces in Vietnam - a country seen as Asia's wildlife trade hotspot - this paper explores COVID-19's impacts on wildlife farms and their owners. Understanding these impacts is important, both in order to design appropriate interventions to support local people in mitigating COVID-19's impacts as well as to inform effective policymaking around wildlife conservation in Vietnam. In this study, we adopted mixed research methods (including a literature and policy review, stakeholder consultation with government agencies and NGOs engaged in designing and monitoring wildlife conservation policies, a wildlife farming household survey, and research validation workshop) to understand the status of Vietnamese wildlife farms, as well as the impacts of COVID-19, and any opportunities and challenges for wildlife conservation and management in Vietnam. Our paper shows that, across the two studied provinces, numbers of wildlife farms and farmed wildlife animals have both declined since the pandemic, with declining market demand and wildlife farm owners experiencing difficulties accessing markets due to travel restrictions. Although this affected wildlife-related income, this represented less than 30 % of families' overall income on average, and thus households were able to maintain their livelihoods through other sources. Most wildlife is raised as an additional food source for farming families and plays an important role in the diets of surveyed households. Findings also highlighted that most surveyed households' post-pandemic recovery strategies involved expanding their wildlife farms in scope and scale; these households perceived a stable domestic market and high prices for wildlife products in future. Our study found several opportunities for sustainable wildlife farming practices, including greater political commitment, an increasing number of wildlife conservation policies, and stronger law enforcement mechanisms. Challenges remain, however; including an unclear and inconsistent policy framework, the presence of an illegal market, and wildlife farm owners' limited knowledge and understanding of wildlife policies. Our paper also shows a lack of comprehensive data and understanding around actual wildlife transactions during the pandemic, leading to challenges in confirming whether COVID-19 had any real impact on wildlife trade. Further research is required to address this knowledge gap.

3.
Mol Ther ; 30(1): 92-104, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34450254

ABSTRACT

Calvarial bone healing is challenging, especially for individuals with osteoporosis because stem cells from osteoporotic patients are highly prone to adipogenic differentiation. Based on previous findings that chondrogenic induction of adipose-derived stem cells (ASCs) can augment calvarial bone healing, we hypothesized that activating chondroinductive Sox Trio genes (Sox5, Sox6, Sox9) and repressing adipoinductive genes (C/ebp-α, Ppar-γ) in osteoporotic ASCs can reprogram cell differentiation and improve calvarial bone healing after implantation. However, simultaneous gene activation and repression in ASCs is difficult. To tackle this problem, we built a CRISPR-BiD system for bi-directional gene regulation. Specifically, we built a CRISPR-AceTran system that exploited both histone acetylation and transcription activation for synergistic Sox Trio activation. We also developed a CRISPR interference (CRISPRi) system that exploited DNA methylation for repression of adipoinductive genes. We combined CRISPR-AceTran and CRISPRi to form the CRISPR-BiD system, which harnessed three mechanisms (transcription activation, histone acetylation, and DNA methylation). After delivery into osteoporotic rat ASCs, CRISPR-BiD significantly enhanced chondrogenesis and in vitro cartilage formation. Implantation of the engineered osteoporotic ASCs into critical-sized calvarial bone defects significantly improved bone healing in osteoporotic rats. These results implicated the potential of the CRISPR-BiD system for bi-directional regulation of cell fate and regenerative medicine.


Subject(s)
Bone Regeneration , Chondrogenesis , Adipose Tissue , Animals , Bone Regeneration/genetics , Cell Differentiation/genetics , Chondrogenesis/genetics , Humans , Rats , Stem Cells , Transcriptional Activation
4.
Biomaterials ; 275: 120965, 2021 08.
Article in English | MEDLINE | ID: mdl-34147719

ABSTRACT

Healing of large calvarial bone defects in adults adopts intramembranous pathway and is difficult. Implantation of adipose-derived stem cells (ASC) that differentiate towards chondrogenic lineage can switch the bone repair pathway and improve calvarial bone healing. Long non-coding RNA DANCR was recently uncovered to promote chondrogenesis, but its roles in rat ASC (rASC) chondrogenesis and bone healing stimulation have yet to be explored. Here we first verified that DANCR expression promoted rASC chondrogenesis, thus we harnessed CRISPR activation (CRISPRa) technology to upregulate endogenous DANCR, stimulate rASC chondrogenesis and improve calvarial bone healing in rats. We generated 4 different dCas9-VPR orthologues by fusing a tripartite transcription activator domain VPR to catalytically dead Cas9 (dCas9) derived from 4 different bacteria, and compared the degree of activation using the 4 different dCas9-VPR. We unveiled surprisingly that the most commonly used dCas9-VPR derived from Streptococcus pyogenes barely activated DANCR. Nonetheless dCas9-VPR from Staphylococcus aureus (SadCas9-VPR) triggered efficient activation of DANCR in rASC. Delivery of SadCas9-VPR and the associated guide RNA into rASC substantially enhanced chondrogenic differentiation of rASC and augmented cartilage formation in vitro. Implantation of the engineered rASC remarkably potentiated the calvarial bone healing in rats. Furthermore, we identified that DANCR improved the rASC chondrogenesis through inhibition of miR-203a and miR-214. These results collectively proved that DANCR activation by SadCas9-VPR-based CRISPRa provides a novel therapeutic approach to improving calvarial bone healing.


Subject(s)
Bone Regeneration , RNA, Long Noncoding , Animals , CRISPR-Cas Systems , Cell Differentiation , Chondrogenesis , RNA, Guide, Kinetoplastida , Rats
5.
Mol Ther ; 28(2): 441-451, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31882321

ABSTRACT

CRISPR activation (CRISPRa) is a burgeoning technology for programmable gene activation, but its potential for tissue regeneration has yet to be fully explored. Bone marrow-derived mesenchymal stem cells (BMSCs) can differentiate into osteogenic or adipogenic pathways, which are governed by the Wnt (Wingless-related integration site) signaling cascade. To promote BMSC differentiation toward osteogenesis and improve calvarial bone healing by BMSCs, we harnessed a highly efficient hybrid baculovirus vector for gene delivery and exploited a synergistic activation mediator (SAM)-based CRISPRa system to activate Wnt10b (that triggers the canonical Wnt pathway) and forkhead c2 (Foxc2) (that elicits the noncanonical Wnt pathway) in BMSCs. We constructed a Bac-CRISPRa vector to deliver the SAM-based CRISPRa system into rat BMSCs. We showed that Bac-CRISPRa enabled CRISPRa delivery and potently activated endogenous Wnt10b and Foxc2 expression in BMSCs for >14 days. Activation of Wnt10b or Foxc2 alone was sufficient to promote osteogenesis and repress adipogenesis in vitro. Furthermore, the robust and prolonged coactivation of both Wnt10b and Foxc2 additively enhanced osteogenic differentiation while inhibiting adipogenic differentiation of BMSCs. The CRISPRa-engineered BMSCs with activated Wnt10b and Foxc2 remarkably improved the calvarial bone healing after implantation into the critical-sized calvarial defects in rats. These data implicate the potentials of CRISPRa technology for bone tissue regeneration.


Subject(s)
Bone Regeneration/genetics , Forkhead Transcription Factors/genetics , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Transcriptional Activation , Wnt Proteins/genetics , Adipogenesis , Animals , Calcification, Physiologic , Calcium/metabolism , Cell Differentiation/genetics , Cells, Cultured , Rats , Skull/diagnostic imaging , Skull/metabolism , Wnt Signaling Pathway , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...