Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e27900, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38571664

ABSTRACT

Cardiovascular (CVD) + Respiratory diseases are recognized as the main cause of death worldwide. Fluctuations in temperature and air pollution have been reported as one of the most important causes of cardiovascular & respiratory diseases. Therefore, in the current study, we assessed the relationship between ambient air temperature and pollution on the number of total emergency hospital admission due to cardiovascular and respiratory conditions in the City of Bojnord, northeastern Iran. The meteorological data, including daily temperature, relative humidity and concentrations of five air pollutants CO, NO2, NOX SO2, and PM10 were obtained from online electronic sensors at the Bojnurd meteorological station from 21th March 2018 to 20th March 2020. Statistical analysis, penalized distributed lag non-linear method was applied using R Software. Also, sensitivity analysis test was calculated by using appropriate application. The results of the study revealed that the effect of higher and lower temperatures was observed immediately from the first day and the second week, respectively. Also result showed with increase and decrease temperature, significantly increased the risk of hospitalization by 36% (RR, 1.36; 95% CI (1), 0.95 to 1.95) and 17% (RR, 1.17; 95% CI (1), 0.88 to 1.55) until the lag 25th day, respectively. Based on the results, increasing temperature significantly increased the hospitalization rate of cardiopulmonary patients, but the effect of cold was not significant on the population as well as age and gender subgroups. Study have also proved that there is no significance correlation between air pollutant and Cardiovascular & respiratory diseases.

2.
Sci Rep ; 13(1): 18971, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923921

ABSTRACT

This study quantifies the groundwater fluoride contamination and assesses associated health risks in fluoride-prone areas of the city of Taj Mahal, Agra, India. The United States Environmental Protection Agency (USEPA) risk model and Monte Carlo Simulations were employed for the assessment. Result revealed that, among various rural and urban areas Pachgain Kheda exhibited the highest average fluoride concentration (5.20 mg/L), while Bagda showed the lowest (0.33 mg/L). Similarly, K.K. Nagar recorded 4.38 mg/L, and Dayalbagh had 1.35 mg/L. Both urban and rural areas exceeded the WHO-recommended limit of 1.5 mg/L, signifying significant public health implications. Health risk assessment indicated a notably elevated probability of non-carcinogenic risk from oral groundwater fluoride exposure in the rural Baroli Ahir block. Risk simulations highlighted that children faced the highest health risks, followed by teenagers and adults. Further, Monte Carlo simulation addressed uncertainties, emphasizing escalated risks for for children and teenagers. The Hazard Quotient (HQ) values for the 5th and 95th percentile in rural areas ranged from was 0.28-5.58 for children, 0.15-2.58 for teenager, and 0.05-0.58 for adults. In urban areas, from the range was 0.53 to 5.26 for children, 0.27 to 2.41 for teenagers, and 0.1 to 0.53 for adults. Physiological and exposure variations rendered children and teenagers more susceptible. According to the mathematical model, calculations for the non-cancerous risk of drinking water (HQ-ing), the most significant parameters in all the targeted groups of rural areas were concentration (CW) and Ingestion rate (IR). These findings hold relevance for policymakers and regulatory boards in understanding the actual impact and setting pre-remediation goals.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , Child , Adult , Adolescent , Humans , Fluorides/adverse effects , Fluorides/analysis , Monte Carlo Method , Water Pollutants, Chemical/analysis , Drinking Water/analysis , India , Risk Assessment , Environmental Monitoring
3.
Cell Death Discov ; 9(1): 423, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001121

ABSTRACT

MicroRNAs (miRNAs) are a class of non-coding RNAs (ncRNAs) with a short length of 19-22 nucleotides. miRNAs are posttranscriptional regulators of gene expression involved in various biological processes like cell growth, apoptosis, and angiogenesis. miR-184 is a well-studied miRNA, for which most studies report its downregulation in cancer cells and tissues and experiments support its role as a tumor suppressor inhibiting malignant biological behaviors of cancer cells in vitro and in vivo. To exert its functions, miR-184 affects some signaling pathways involved in tumorigenesis like Wnt and ß-catenin, and AKT/mTORC1 pathway, oncogenic factors (e.g., c-Myc) or apoptotic proteins, such as Bcl-2. Interestingly, clinical investigations have shown miR-184 with good performance as a prognostic/diagnostic biomarker for various cancers. Additionally, exogenous miR-184 in cell and xenograft animal studies suggest it as a therapeutic anticancer target. In this review, we outline the studies that evaluated the roles of miR-184 in tumorigenesis as well as its clinical significance.

SELECTION OF CITATIONS
SEARCH DETAIL
...