Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 1604, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733538

ABSTRACT

The mutational spectrum of deafness in Indochina Peninsula, including Vietnam, remains mostly undetermined. This significantly hampers the progress toward establishing an effective genetic screening method and early customized rehabilitation modalities for hearing loss. In this study, we evaluated the genetic profile of severe-to-profound hearing loss in a Vietnamese pediatric population using a hierarchical genetic analysis protocol that screened 11 known deafness-causing variants, followed by massively parallel sequencing targeting 129 deafness-associated genes. Eighty-seven children with isolated severe-to-profound non-syndromic hearing loss without family history were included. The overall molecular diagnostic yield was estimated to be 31.7%. The mutational spectrum for severe-to-profound non-syndromic hearing loss in our Vietnamese population was unique: The most prevalent variants resided in the MYO15A gene (7.2%), followed by GJB2 (6.9%), MYO7A (5.5%), SLC26A4 (4.6%), TMC1 (1.8%), ESPN (1.8%), POU3F4 (1.8%), MYH14 (1.8%), EYA1 (1.8%), and MR-RNR1 (1.1%). The unique spectrum of causative genes in the Vietnamese deaf population was similar to that in the southern Chinese deaf population. It is our hope that the mutation spectrum provided here could aid in establishing an efficient protocol for genetic analysis of severe-to-profound hearing loss and a customized screening kit for the Vietnamese population.


Subject(s)
Hearing Loss/genetics , Mutation , Child , DNA Mutational Analysis , Female , Humans , Male , Vietnam
2.
Materials (Basel) ; 10(10)2017 Oct 18.
Article in English | MEDLINE | ID: mdl-29057821

ABSTRACT

Based on the classical shell theory, the linear dynamic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations subjected to dynamic loads is presented. The truncated conical shells are reinforced by single-walled carbon nanotubes (SWCNTs) that vary according to the linear functions of the shell thickness. The motion equations are solved by the Galerkin method and the fourth-order Runge-Kutta method. In numerical results, the influences of geometrical parameters, elastic foundations, natural frequency parameters, and nanotube volume fraction of FG-CNTRC truncated conical shells are investigated. The proposed results are validated by comparing them with those of other authors.

SELECTION OF CITATIONS
SEARCH DETAIL
...